How accurate is the Rice–Ramsperger–Kassel–Marcus theory? The case of H+3

The classical Rice–Ramsperger–Kassel–Marcus formula is tested at an accuracy level of a few percent by comparing results of numerical phase space integration with lifetimes deduced from trajectory calculations. The test object is HD+2; the calculation has been done for total energies of 0.5, 1.0, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1994-09, Vol.101 (6), p.4750-4758
Hauptverfasser: Berblinger, Michael, Schlier, Christoph
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4758
container_issue 6
container_start_page 4750
container_title The Journal of chemical physics
container_volume 101
creator Berblinger, Michael
Schlier, Christoph
description The classical Rice–Ramsperger–Kassel–Marcus formula is tested at an accuracy level of a few percent by comparing results of numerical phase space integration with lifetimes deduced from trajectory calculations. The test object is HD+2; the calculation has been done for total energies of 0.5, 1.0, and 1.5 eV above dissociation, and for total angular momenta of 0–60ℏ. Presupposing that the trajectory calculations show the true classical dynamics, we find systematic deviations of up to 40% of the RRKM results. They can be fully explained by the influence of ‘‘direct trajectories,’’ a special kind of nonergodic behavior of the system. After correction for this phenomenon, both methods agree to within the accuracy of the calculations, which is about 3%. We also verified that the discrepancy vanishes when the energy approaches the dissociation energy.
doi_str_mv 10.1063/1.467397
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_467397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_467397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-170a053ce1f03acb2dca17b2e5b7e3df5ea172e945ff4ae1e7e7268414c53e373</originalsourceid><addsrcrecordid>eNotkM1Kw0AUhQdRsFbBR5ilIKn3zk-mWYkUa8RKodR1uJne0UhLykyKdOc7-IY-idG6OufAx1l8QlwijBByfYMjkztduCMxQBgXmcsLOBYDAIVZkUN-Ks5SegcAdMoMxLxsPyR5v4vUsWyS7N5YLhrP359fC9qkLcdXjv14opR43Zdnin73x7VxfyuXPe8psWyDLK_1uTgJtE588Z9D8TK9X07KbDZ_eJzczTKvrOsydEBgtWcMoMnXauUJXa3Y1o71Kljup-LC2BAMMbJjp_KxQeOtZu30UFwdfn1sU4ocqm1sNhT3FUL1K6LC6iBC_wBW6lIl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>How accurate is the Rice–Ramsperger–Kassel–Marcus theory? The case of H+3</title><source>AIP Digital Archive</source><creator>Berblinger, Michael ; Schlier, Christoph</creator><creatorcontrib>Berblinger, Michael ; Schlier, Christoph</creatorcontrib><description>The classical Rice–Ramsperger–Kassel–Marcus formula is tested at an accuracy level of a few percent by comparing results of numerical phase space integration with lifetimes deduced from trajectory calculations. The test object is HD+2; the calculation has been done for total energies of 0.5, 1.0, and 1.5 eV above dissociation, and for total angular momenta of 0–60ℏ. Presupposing that the trajectory calculations show the true classical dynamics, we find systematic deviations of up to 40% of the RRKM results. They can be fully explained by the influence of ‘‘direct trajectories,’’ a special kind of nonergodic behavior of the system. After correction for this phenomenon, both methods agree to within the accuracy of the calculations, which is about 3%. We also verified that the discrepancy vanishes when the energy approaches the dissociation energy.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.467397</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1994-09, Vol.101 (6), p.4750-4758</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-170a053ce1f03acb2dca17b2e5b7e3df5ea172e945ff4ae1e7e7268414c53e373</citedby><cites>FETCH-LOGICAL-c257t-170a053ce1f03acb2dca17b2e5b7e3df5ea172e945ff4ae1e7e7268414c53e373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Berblinger, Michael</creatorcontrib><creatorcontrib>Schlier, Christoph</creatorcontrib><title>How accurate is the Rice–Ramsperger–Kassel–Marcus theory? The case of H+3</title><title>The Journal of chemical physics</title><description>The classical Rice–Ramsperger–Kassel–Marcus formula is tested at an accuracy level of a few percent by comparing results of numerical phase space integration with lifetimes deduced from trajectory calculations. The test object is HD+2; the calculation has been done for total energies of 0.5, 1.0, and 1.5 eV above dissociation, and for total angular momenta of 0–60ℏ. Presupposing that the trajectory calculations show the true classical dynamics, we find systematic deviations of up to 40% of the RRKM results. They can be fully explained by the influence of ‘‘direct trajectories,’’ a special kind of nonergodic behavior of the system. After correction for this phenomenon, both methods agree to within the accuracy of the calculations, which is about 3%. We also verified that the discrepancy vanishes when the energy approaches the dissociation energy.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNotkM1Kw0AUhQdRsFbBR5ilIKn3zk-mWYkUa8RKodR1uJne0UhLykyKdOc7-IY-idG6OufAx1l8QlwijBByfYMjkztduCMxQBgXmcsLOBYDAIVZkUN-Ks5SegcAdMoMxLxsPyR5v4vUsWyS7N5YLhrP359fC9qkLcdXjv14opR43Zdnin73x7VxfyuXPe8psWyDLK_1uTgJtE588Z9D8TK9X07KbDZ_eJzczTKvrOsydEBgtWcMoMnXauUJXa3Y1o71Kljup-LC2BAMMbJjp_KxQeOtZu30UFwdfn1sU4ocqm1sNhT3FUL1K6LC6iBC_wBW6lIl</recordid><startdate>19940915</startdate><enddate>19940915</enddate><creator>Berblinger, Michael</creator><creator>Schlier, Christoph</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940915</creationdate><title>How accurate is the Rice–Ramsperger–Kassel–Marcus theory? The case of H+3</title><author>Berblinger, Michael ; Schlier, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-170a053ce1f03acb2dca17b2e5b7e3df5ea172e945ff4ae1e7e7268414c53e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berblinger, Michael</creatorcontrib><creatorcontrib>Schlier, Christoph</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berblinger, Michael</au><au>Schlier, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How accurate is the Rice–Ramsperger–Kassel–Marcus theory? The case of H+3</atitle><jtitle>The Journal of chemical physics</jtitle><date>1994-09-15</date><risdate>1994</risdate><volume>101</volume><issue>6</issue><spage>4750</spage><epage>4758</epage><pages>4750-4758</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The classical Rice–Ramsperger–Kassel–Marcus formula is tested at an accuracy level of a few percent by comparing results of numerical phase space integration with lifetimes deduced from trajectory calculations. The test object is HD+2; the calculation has been done for total energies of 0.5, 1.0, and 1.5 eV above dissociation, and for total angular momenta of 0–60ℏ. Presupposing that the trajectory calculations show the true classical dynamics, we find systematic deviations of up to 40% of the RRKM results. They can be fully explained by the influence of ‘‘direct trajectories,’’ a special kind of nonergodic behavior of the system. After correction for this phenomenon, both methods agree to within the accuracy of the calculations, which is about 3%. We also verified that the discrepancy vanishes when the energy approaches the dissociation energy.</abstract><doi>10.1063/1.467397</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1994-09, Vol.101 (6), p.4750-4758
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_467397
source AIP Digital Archive
title How accurate is the Rice–Ramsperger–Kassel–Marcus theory? The case of H+3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20accurate%20is%20the%20Rice%E2%80%93Ramsperger%E2%80%93Kassel%E2%80%93Marcus%20theory?%20The%20case%20of%20H+3&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Berblinger,%20Michael&rft.date=1994-09-15&rft.volume=101&rft.issue=6&rft.spage=4750&rft.epage=4758&rft.pages=4750-4758&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.467397&rft_dat=%3Ccrossref%3E10_1063_1_467397%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true