Comparison of a Born-Green-Yvon integral equation treatment of a compressible binary polymer blend on a lattice with recent simulations

Predictions of macroscopic and microscopic thermodynamic properties of a polymer blend using the Born–Green–Yvon (BGY) integral equation treatment of a compressible polymer mixture on a lattice are compared to recent simulations of compressible symmetric binary mixtures on a lattice. The theory is c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1993-09, Vol.99 (5), p.4112-4120
Hauptverfasser: SEVIAN, H. M, BRAZHNIK, P. K, LIPSON, J. E. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4120
container_issue 5
container_start_page 4112
container_title The Journal of chemical physics
container_volume 99
creator SEVIAN, H. M
BRAZHNIK, P. K
LIPSON, J. E. G
description Predictions of macroscopic and microscopic thermodynamic properties of a polymer blend using the Born–Green–Yvon (BGY) integral equation treatment of a compressible polymer mixture on a lattice are compared to recent simulations of compressible symmetric binary mixtures on a lattice. The theory is consistent with recent simulation studies which indicate that the critical temperature scales linearly with chain length. In addition, we show that the theory is effective in modeling the qualitative trends in the numbers of different types of pair contacts on the lattice, and also present comparisons of binodal and spinodal curves. These comparisons indicate that quantitative differences between the theory and simulation results are likely associated with the manner in which connectivity is treated in the lattice BGY description. We conclude by discussing avenues whereby connectivity may be incorporated more consistently in the development of the theory.
doi_str_mv 10.1063/1.466107
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_466107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3817354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-60fa977108931e3932e75f947bd067d93c13bc90abb82255b9c826a19f2f08e03</originalsourceid><addsrcrecordid>eNo9kEFLxDAUhIMouK6CPyEHD166vjRt0hx10VVY8KIHTyXNvmikTWuSVfYX-LftWvH04GNmmDeEnDNYMBD8ii0KIRjIAzJjUKlMCgWHZAaQs0wJEMfkJMZ3AGAyL2bke9l3gw4u9p72lmp60wefrQKiz14-R-h8wtegW4ofW53cSFJAnTr0aTKYMSBgjK5pkTbO67CjQ9_uOgx0RH5DR4-mrU7JGaRfLr3RgGbvj67btr-h8ZQcWd1GPPu7c_J8d_u0vM_Wj6uH5fU6M3lZpEyA1UrK_WecIVc8R1laVchmA0JuFDeMN0aBbpoqz8uyUabKhWbK5hYqBD4nl1OuCX2MAW09BNeNnWsG9X7AmtXTgKP0YpIOOhrd2qC9cfFfzysmeVnwHxEEcRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of a Born-Green-Yvon integral equation treatment of a compressible binary polymer blend on a lattice with recent simulations</title><source>AIP Digital Archive</source><creator>SEVIAN, H. M ; BRAZHNIK, P. K ; LIPSON, J. E. G</creator><creatorcontrib>SEVIAN, H. M ; BRAZHNIK, P. K ; LIPSON, J. E. G</creatorcontrib><description>Predictions of macroscopic and microscopic thermodynamic properties of a polymer blend using the Born–Green–Yvon (BGY) integral equation treatment of a compressible polymer mixture on a lattice are compared to recent simulations of compressible symmetric binary mixtures on a lattice. The theory is consistent with recent simulation studies which indicate that the critical temperature scales linearly with chain length. In addition, we show that the theory is effective in modeling the qualitative trends in the numbers of different types of pair contacts on the lattice, and also present comparisons of binodal and spinodal curves. These comparisons indicate that quantitative differences between the theory and simulation results are likely associated with the manner in which connectivity is treated in the lattice BGY description. We conclude by discussing avenues whereby connectivity may be incorporated more consistently in the development of the theory.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.466107</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Properties and characterization ; Thermal and thermodynamic properties</subject><ispartof>The Journal of chemical physics, 1993-09, Vol.99 (5), p.4112-4120</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-60fa977108931e3932e75f947bd067d93c13bc90abb82255b9c826a19f2f08e03</citedby><cites>FETCH-LOGICAL-c254t-60fa977108931e3932e75f947bd067d93c13bc90abb82255b9c826a19f2f08e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3817354$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SEVIAN, H. M</creatorcontrib><creatorcontrib>BRAZHNIK, P. K</creatorcontrib><creatorcontrib>LIPSON, J. E. G</creatorcontrib><title>Comparison of a Born-Green-Yvon integral equation treatment of a compressible binary polymer blend on a lattice with recent simulations</title><title>The Journal of chemical physics</title><description>Predictions of macroscopic and microscopic thermodynamic properties of a polymer blend using the Born–Green–Yvon (BGY) integral equation treatment of a compressible polymer mixture on a lattice are compared to recent simulations of compressible symmetric binary mixtures on a lattice. The theory is consistent with recent simulation studies which indicate that the critical temperature scales linearly with chain length. In addition, we show that the theory is effective in modeling the qualitative trends in the numbers of different types of pair contacts on the lattice, and also present comparisons of binodal and spinodal curves. These comparisons indicate that quantitative differences between the theory and simulation results are likely associated with the manner in which connectivity is treated in the lattice BGY description. We conclude by discussing avenues whereby connectivity may be incorporated more consistently in the development of the theory.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Thermal and thermodynamic properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAUhIMouK6CPyEHD166vjRt0hx10VVY8KIHTyXNvmikTWuSVfYX-LftWvH04GNmmDeEnDNYMBD8ii0KIRjIAzJjUKlMCgWHZAaQs0wJEMfkJMZ3AGAyL2bke9l3gw4u9p72lmp60wefrQKiz14-R-h8wtegW4ofW53cSFJAnTr0aTKYMSBgjK5pkTbO67CjQ9_uOgx0RH5DR4-mrU7JGaRfLr3RgGbvj67btr-h8ZQcWd1GPPu7c_J8d_u0vM_Wj6uH5fU6M3lZpEyA1UrK_WecIVc8R1laVchmA0JuFDeMN0aBbpoqz8uyUabKhWbK5hYqBD4nl1OuCX2MAW09BNeNnWsG9X7AmtXTgKP0YpIOOhrd2qC9cfFfzysmeVnwHxEEcRs</recordid><startdate>19930901</startdate><enddate>19930901</enddate><creator>SEVIAN, H. M</creator><creator>BRAZHNIK, P. K</creator><creator>LIPSON, J. E. G</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930901</creationdate><title>Comparison of a Born-Green-Yvon integral equation treatment of a compressible binary polymer blend on a lattice with recent simulations</title><author>SEVIAN, H. M ; BRAZHNIK, P. K ; LIPSON, J. E. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-60fa977108931e3932e75f947bd067d93c13bc90abb82255b9c826a19f2f08e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Thermal and thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SEVIAN, H. M</creatorcontrib><creatorcontrib>BRAZHNIK, P. K</creatorcontrib><creatorcontrib>LIPSON, J. E. G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SEVIAN, H. M</au><au>BRAZHNIK, P. K</au><au>LIPSON, J. E. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of a Born-Green-Yvon integral equation treatment of a compressible binary polymer blend on a lattice with recent simulations</atitle><jtitle>The Journal of chemical physics</jtitle><date>1993-09-01</date><risdate>1993</risdate><volume>99</volume><issue>5</issue><spage>4112</spage><epage>4120</epage><pages>4112-4120</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Predictions of macroscopic and microscopic thermodynamic properties of a polymer blend using the Born–Green–Yvon (BGY) integral equation treatment of a compressible polymer mixture on a lattice are compared to recent simulations of compressible symmetric binary mixtures on a lattice. The theory is consistent with recent simulation studies which indicate that the critical temperature scales linearly with chain length. In addition, we show that the theory is effective in modeling the qualitative trends in the numbers of different types of pair contacts on the lattice, and also present comparisons of binodal and spinodal curves. These comparisons indicate that quantitative differences between the theory and simulation results are likely associated with the manner in which connectivity is treated in the lattice BGY description. We conclude by discussing avenues whereby connectivity may be incorporated more consistently in the development of the theory.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.466107</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1993-09, Vol.99 (5), p.4112-4120
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_466107
source AIP Digital Archive
subjects Applied sciences
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Properties and characterization
Thermal and thermodynamic properties
title Comparison of a Born-Green-Yvon integral equation treatment of a compressible binary polymer blend on a lattice with recent simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20a%20Born-Green-Yvon%20integral%20equation%20treatment%20of%20a%20compressible%20binary%20polymer%20blend%20on%20a%20lattice%20with%20recent%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=SEVIAN,%20H.%20M&rft.date=1993-09-01&rft.volume=99&rft.issue=5&rft.spage=4112&rft.epage=4120&rft.pages=4112-4120&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.466107&rft_dat=%3Cpascalfrancis_cross%3E3817354%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true