Lennard-Jones fluids in cylindrical pores: nonlocal theory and computer simulation

We present adsorption isotherms, phase diagrams, and density profiles for a Lennard-Jones fluid confined to a cylindrical pore. In particular, we concentrate on the gas–liquid transition in the pore (capillary condensation). We compare simulations for a series of radii and different temperatures wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1988-05, Vol.88 (10), p.6487-6500
Hauptverfasser: PETERSON, B. K, GUBBINS, K. E, HEFFELFINGER, G. S, MARINI, U, MARCONI, B, VAN SWOL, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6500
container_issue 10
container_start_page 6487
container_title The Journal of chemical physics
container_volume 88
creator PETERSON, B. K
GUBBINS, K. E
HEFFELFINGER, G. S
MARINI, U
MARCONI, B
VAN SWOL, F
description We present adsorption isotherms, phase diagrams, and density profiles for a Lennard-Jones fluid confined to a cylindrical pore. In particular, we concentrate on the gas–liquid transition in the pore (capillary condensation). We compare simulations for a series of radii and different temperatures with mean field density functional theory (MFT). Two forms of MFT are considered, the simple local density approximation (LDA) and Tarazona’s nonlocal or smoothed density approximation (SDA). We find that the SDA provides a quite accurate description of fluid structure in the pore and that it produces phase diagrams in good agreement with the simulation data. For larger radii and temperatures T/Tc≳0.6 the SDA shows steep rises in adsorption close to the transition. This strongly affects the shape of the coexistence curve in the T, ρ̄ plane. Here ρ̄ is defined as the average density inside the pore. This behavior is confirmed by the simulation. In contrast, LDA gives a poor representation of the fluid structure and this underlies the failure to reproduce the phase diagrams and adsorption isotherms found with SDA or simulation. For extremely small radii (R*≈1) the simulation adsorption isotherms are smooth, and for not too low a temperature they are accurately described by an approach which starts from the potential distribution theorem and uses perturbation theory for the true one-dimensional fluid.
doi_str_mv 10.1063/1.454434
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_454434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7137797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-f81d7db77e00b8c1589b5baa1709edc7e2997ce87b5783e2467892c74aa228b83</originalsourceid><addsrcrecordid>eNo9kM1KxDAYRYMoOI6Cj5CFCzcdv_y0X-JOBn8pCKLrkiYpRjpJSTqLeXtnGHF1uXC4cA8h1wxWDBpxx1ayllLIE7JgoHSFjYZTsgDgrNINNOfkopQfAGDI5YJ8tD5Gk131lqIvdBi3wRUaIrW7MUSXgzUjnVL25Z7GFMd06PO3T3lHTXTUps20nX2mJWy2o5lDipfkbDBj8Vd_uSRfT4-f65eqfX9-XT-0lRWcz9WgmEPXI3qAXllWK93XvTEMQXtn0XOt0XqFfY1KeC4bVJpblMZwrnolluT2uGtzKiX7oZty2Ji86xh0Bxcd644u9ujNEZ1M2R8Ysok2lH8emUDUKH4Bvh5eNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lennard-Jones fluids in cylindrical pores: nonlocal theory and computer simulation</title><source>AIP Digital Archive</source><creator>PETERSON, B. K ; GUBBINS, K. E ; HEFFELFINGER, G. S ; MARINI, U ; MARCONI, B ; VAN SWOL, F</creator><creatorcontrib>PETERSON, B. K ; GUBBINS, K. E ; HEFFELFINGER, G. S ; MARINI, U ; MARCONI, B ; VAN SWOL, F</creatorcontrib><description>We present adsorption isotherms, phase diagrams, and density profiles for a Lennard-Jones fluid confined to a cylindrical pore. In particular, we concentrate on the gas–liquid transition in the pore (capillary condensation). We compare simulations for a series of radii and different temperatures with mean field density functional theory (MFT). Two forms of MFT are considered, the simple local density approximation (LDA) and Tarazona’s nonlocal or smoothed density approximation (SDA). We find that the SDA provides a quite accurate description of fluid structure in the pore and that it produces phase diagrams in good agreement with the simulation data. For larger radii and temperatures T/Tc≳0.6 the SDA shows steep rises in adsorption close to the transition. This strongly affects the shape of the coexistence curve in the T, ρ̄ plane. Here ρ̄ is defined as the average density inside the pore. This behavior is confirmed by the simulation. In contrast, LDA gives a poor representation of the fluid structure and this underlies the failure to reproduce the phase diagrams and adsorption isotherms found with SDA or simulation. For extremely small radii (R*≈1) the simulation adsorption isotherms are smooth, and for not too low a temperature they are accurately described by an approach which starts from the potential distribution theorem and uses perturbation theory for the true one-dimensional fluid.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.454434</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Physics ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 1988-05, Vol.88 (10), p.6487-6500</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-f81d7db77e00b8c1589b5baa1709edc7e2997ce87b5783e2467892c74aa228b83</citedby><cites>FETCH-LOGICAL-c322t-f81d7db77e00b8c1589b5baa1709edc7e2997ce87b5783e2467892c74aa228b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7137797$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PETERSON, B. K</creatorcontrib><creatorcontrib>GUBBINS, K. E</creatorcontrib><creatorcontrib>HEFFELFINGER, G. S</creatorcontrib><creatorcontrib>MARINI, U</creatorcontrib><creatorcontrib>MARCONI, B</creatorcontrib><creatorcontrib>VAN SWOL, F</creatorcontrib><title>Lennard-Jones fluids in cylindrical pores: nonlocal theory and computer simulation</title><title>The Journal of chemical physics</title><description>We present adsorption isotherms, phase diagrams, and density profiles for a Lennard-Jones fluid confined to a cylindrical pore. In particular, we concentrate on the gas–liquid transition in the pore (capillary condensation). We compare simulations for a series of radii and different temperatures with mean field density functional theory (MFT). Two forms of MFT are considered, the simple local density approximation (LDA) and Tarazona’s nonlocal or smoothed density approximation (SDA). We find that the SDA provides a quite accurate description of fluid structure in the pore and that it produces phase diagrams in good agreement with the simulation data. For larger radii and temperatures T/Tc≳0.6 the SDA shows steep rises in adsorption close to the transition. This strongly affects the shape of the coexistence curve in the T, ρ̄ plane. Here ρ̄ is defined as the average density inside the pore. This behavior is confirmed by the simulation. In contrast, LDA gives a poor representation of the fluid structure and this underlies the failure to reproduce the phase diagrams and adsorption isotherms found with SDA or simulation. For extremely small radii (R*≈1) the simulation adsorption isotherms are smooth, and for not too low a temperature they are accurately described by an approach which starts from the potential distribution theorem and uses perturbation theory for the true one-dimensional fluid.</description><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KxDAYRYMoOI6Cj5CFCzcdv_y0X-JOBn8pCKLrkiYpRjpJSTqLeXtnGHF1uXC4cA8h1wxWDBpxx1ayllLIE7JgoHSFjYZTsgDgrNINNOfkopQfAGDI5YJ8tD5Gk131lqIvdBi3wRUaIrW7MUSXgzUjnVL25Z7GFMd06PO3T3lHTXTUps20nX2mJWy2o5lDipfkbDBj8Vd_uSRfT4-f65eqfX9-XT-0lRWcz9WgmEPXI3qAXllWK93XvTEMQXtn0XOt0XqFfY1KeC4bVJpblMZwrnolluT2uGtzKiX7oZty2Ji86xh0Bxcd644u9ujNEZ1M2R8Ysok2lH8emUDUKH4Bvh5eNg</recordid><startdate>19880515</startdate><enddate>19880515</enddate><creator>PETERSON, B. K</creator><creator>GUBBINS, K. E</creator><creator>HEFFELFINGER, G. S</creator><creator>MARINI, U</creator><creator>MARCONI, B</creator><creator>VAN SWOL, F</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19880515</creationdate><title>Lennard-Jones fluids in cylindrical pores: nonlocal theory and computer simulation</title><author>PETERSON, B. K ; GUBBINS, K. E ; HEFFELFINGER, G. S ; MARINI, U ; MARCONI, B ; VAN SWOL, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-f81d7db77e00b8c1589b5baa1709edc7e2997ce87b5783e2467892c74aa228b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PETERSON, B. K</creatorcontrib><creatorcontrib>GUBBINS, K. E</creatorcontrib><creatorcontrib>HEFFELFINGER, G. S</creatorcontrib><creatorcontrib>MARINI, U</creatorcontrib><creatorcontrib>MARCONI, B</creatorcontrib><creatorcontrib>VAN SWOL, F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PETERSON, B. K</au><au>GUBBINS, K. E</au><au>HEFFELFINGER, G. S</au><au>MARINI, U</au><au>MARCONI, B</au><au>VAN SWOL, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lennard-Jones fluids in cylindrical pores: nonlocal theory and computer simulation</atitle><jtitle>The Journal of chemical physics</jtitle><date>1988-05-15</date><risdate>1988</risdate><volume>88</volume><issue>10</issue><spage>6487</spage><epage>6500</epage><pages>6487-6500</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We present adsorption isotherms, phase diagrams, and density profiles for a Lennard-Jones fluid confined to a cylindrical pore. In particular, we concentrate on the gas–liquid transition in the pore (capillary condensation). We compare simulations for a series of radii and different temperatures with mean field density functional theory (MFT). Two forms of MFT are considered, the simple local density approximation (LDA) and Tarazona’s nonlocal or smoothed density approximation (SDA). We find that the SDA provides a quite accurate description of fluid structure in the pore and that it produces phase diagrams in good agreement with the simulation data. For larger radii and temperatures T/Tc≳0.6 the SDA shows steep rises in adsorption close to the transition. This strongly affects the shape of the coexistence curve in the T, ρ̄ plane. Here ρ̄ is defined as the average density inside the pore. This behavior is confirmed by the simulation. In contrast, LDA gives a poor representation of the fluid structure and this underlies the failure to reproduce the phase diagrams and adsorption isotherms found with SDA or simulation. For extremely small radii (R*≈1) the simulation adsorption isotherms are smooth, and for not too low a temperature they are accurately described by an approach which starts from the potential distribution theorem and uses perturbation theory for the true one-dimensional fluid.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.454434</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1988-05, Vol.88 (10), p.6487-6500
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_454434
source AIP Digital Archive
subjects Exact sciences and technology
Physics
Statistical physics, thermodynamics, and nonlinear dynamical systems
Thermodynamics
title Lennard-Jones fluids in cylindrical pores: nonlocal theory and computer simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lennard-Jones%20fluids%20in%20cylindrical%20pores:%20nonlocal%20theory%20and%20computer%20simulation&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=PETERSON,%20B.%20K&rft.date=1988-05-15&rft.volume=88&rft.issue=10&rft.spage=6487&rft.epage=6500&rft.pages=6487-6500&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.454434&rft_dat=%3Cpascalfrancis_cross%3E7137797%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true