Is there a zeroth order time-step error in diffusion quantum Monte Carlo?
It is demonstrated that the short-time Green’s function often used in diffusion quantum Monte Carlo simulations of the Schrödinger equation generates an unbiased probability distribution in the limit of vanishing time step τ. For finite τ, an error is introduced into the potential which is of O(τ)....
Gespeichert in:
Veröffentlicht in: | J. Chem. Phys.; (United States) 1987-08, Vol.87 (3), p.1905-1906 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1906 |
---|---|
container_issue | 3 |
container_start_page | 1905 |
container_title | J. Chem. Phys.; (United States) |
container_volume | 87 |
creator | REYNOLDS, P. J OWEN, R. K LESTER, W. A. JR |
description | It is demonstrated that the short-time Green’s function often used in diffusion quantum Monte Carlo simulations of the Schrödinger equation generates an unbiased probability distribution in the limit of vanishing time step τ. For finite τ, an error is introduced into the potential which is of O(τ). An expression for this term is derived. |
doi_str_mv | 10.1063/1.453213 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_453213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7646391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-e2983093d1e5214edf00a928dcf5c35635d746f1a5758fa10d1b13de801fac7b3</originalsourceid><addsrcrecordid>eNo90E1LAzEUheEgCtYq-BOCuHAz9d7JJDNZiRQ_ChU3uh7S5IZG2klN0oX-eisjrs7m4Sxexi4RZghK3OKskaJGccQmCJ2uWqXhmE0Aaqy0AnXKznL-AABs62bCFovMy5oSccO_KcWy5jE5SryELVW50I5TSjHxMHAXvN_nEAf-uTdD2W_5SxwK8blJm3h3zk682WS6-Nspe398eJs_V8vXp8X8fllZgbJUVOtOgBYOSdbYkPMARteds15aIZWQrm2URyNb2XmD4HCFwlEH6I1tV2LKrsbfmEvosw2F7NrGYSBbetV0Wgs4oJsR2RRzTuT7XQpbk756hP63U4_92OlAr0e6M9majU9msCH_-1Y1SmgUP-hJZYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Is there a zeroth order time-step error in diffusion quantum Monte Carlo?</title><source>AIP Digital Archive</source><creator>REYNOLDS, P. J ; OWEN, R. K ; LESTER, W. A. JR</creator><creatorcontrib>REYNOLDS, P. J ; OWEN, R. K ; LESTER, W. A. JR ; Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720</creatorcontrib><description>It is demonstrated that the short-time Green’s function often used in diffusion quantum Monte Carlo simulations of the Schrödinger equation generates an unbiased probability distribution in the limit of vanishing time step τ. For finite τ, an error is introduced into the potential which is of O(τ). An expression for this term is derived.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.453213</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>657000 - Theoretical & Mathematical Physics ; ANALYTICAL SOLUTION ; Atomic and molecular physics ; Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFERENTIAL EQUATIONS ; DIFFUSION ; Electronic structure of atoms, molecules and their ions: theory ; EQUATIONS ; ERRORS ; Exact sciences and technology ; FUNCTIONS ; GREEN FUNCTION ; MONTE CARLO METHOD ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; SCHROEDINGER EQUATION ; WAVE EQUATIONS</subject><ispartof>J. Chem. Phys.; (United States), 1987-08, Vol.87 (3), p.1905-1906</ispartof><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-e2983093d1e5214edf00a928dcf5c35635d746f1a5758fa10d1b13de801fac7b3</citedby><cites>FETCH-LOGICAL-c315t-e2983093d1e5214edf00a928dcf5c35635d746f1a5758fa10d1b13de801fac7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7646391$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6489930$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>REYNOLDS, P. J</creatorcontrib><creatorcontrib>OWEN, R. K</creatorcontrib><creatorcontrib>LESTER, W. A. JR</creatorcontrib><creatorcontrib>Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720</creatorcontrib><title>Is there a zeroth order time-step error in diffusion quantum Monte Carlo?</title><title>J. Chem. Phys.; (United States)</title><description>It is demonstrated that the short-time Green’s function often used in diffusion quantum Monte Carlo simulations of the Schrödinger equation generates an unbiased probability distribution in the limit of vanishing time step τ. For finite τ, an error is introduced into the potential which is of O(τ). An expression for this term is derived.</description><subject>657000 - Theoretical & Mathematical Physics</subject><subject>ANALYTICAL SOLUTION</subject><subject>Atomic and molecular physics</subject><subject>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DIFFUSION</subject><subject>Electronic structure of atoms, molecules and their ions: theory</subject><subject>EQUATIONS</subject><subject>ERRORS</subject><subject>Exact sciences and technology</subject><subject>FUNCTIONS</subject><subject>GREEN FUNCTION</subject><subject>MONTE CARLO METHOD</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>SCHROEDINGER EQUATION</subject><subject>WAVE EQUATIONS</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNo90E1LAzEUheEgCtYq-BOCuHAz9d7JJDNZiRQ_ChU3uh7S5IZG2klN0oX-eisjrs7m4Sxexi4RZghK3OKskaJGccQmCJ2uWqXhmE0Aaqy0AnXKznL-AABs62bCFovMy5oSccO_KcWy5jE5SryELVW50I5TSjHxMHAXvN_nEAf-uTdD2W_5SxwK8blJm3h3zk682WS6-Nspe398eJs_V8vXp8X8fllZgbJUVOtOgBYOSdbYkPMARteds15aIZWQrm2URyNb2XmD4HCFwlEH6I1tV2LKrsbfmEvosw2F7NrGYSBbetV0Wgs4oJsR2RRzTuT7XQpbk756hP63U4_92OlAr0e6M9majU9msCH_-1Y1SmgUP-hJZYw</recordid><startdate>19870801</startdate><enddate>19870801</enddate><creator>REYNOLDS, P. J</creator><creator>OWEN, R. K</creator><creator>LESTER, W. A. JR</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19870801</creationdate><title>Is there a zeroth order time-step error in diffusion quantum Monte Carlo?</title><author>REYNOLDS, P. J ; OWEN, R. K ; LESTER, W. A. JR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-e2983093d1e5214edf00a928dcf5c35635d746f1a5758fa10d1b13de801fac7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>657000 - Theoretical & Mathematical Physics</topic><topic>ANALYTICAL SOLUTION</topic><topic>Atomic and molecular physics</topic><topic>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DIFFUSION</topic><topic>Electronic structure of atoms, molecules and their ions: theory</topic><topic>EQUATIONS</topic><topic>ERRORS</topic><topic>Exact sciences and technology</topic><topic>FUNCTIONS</topic><topic>GREEN FUNCTION</topic><topic>MONTE CARLO METHOD</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>SCHROEDINGER EQUATION</topic><topic>WAVE EQUATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>REYNOLDS, P. J</creatorcontrib><creatorcontrib>OWEN, R. K</creatorcontrib><creatorcontrib>LESTER, W. A. JR</creatorcontrib><creatorcontrib>Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Chem. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>REYNOLDS, P. J</au><au>OWEN, R. K</au><au>LESTER, W. A. JR</au><aucorp>Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is there a zeroth order time-step error in diffusion quantum Monte Carlo?</atitle><jtitle>J. Chem. Phys.; (United States)</jtitle><date>1987-08-01</date><risdate>1987</risdate><volume>87</volume><issue>3</issue><spage>1905</spage><epage>1906</epage><pages>1905-1906</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>It is demonstrated that the short-time Green’s function often used in diffusion quantum Monte Carlo simulations of the Schrödinger equation generates an unbiased probability distribution in the limit of vanishing time step τ. For finite τ, an error is introduced into the potential which is of O(τ). An expression for this term is derived.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.453213</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | J. Chem. Phys.; (United States), 1987-08, Vol.87 (3), p.1905-1906 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_453213 |
source | AIP Digital Archive |
subjects | 657000 - Theoretical & Mathematical Physics ANALYTICAL SOLUTION Atomic and molecular physics Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DIFFERENTIAL EQUATIONS DIFFUSION Electronic structure of atoms, molecules and their ions: theory EQUATIONS ERRORS Exact sciences and technology FUNCTIONS GREEN FUNCTION MONTE CARLO METHOD PARTIAL DIFFERENTIAL EQUATIONS Physics SCHROEDINGER EQUATION WAVE EQUATIONS |
title | Is there a zeroth order time-step error in diffusion quantum Monte Carlo? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20there%20a%20zeroth%20order%20time-step%20error%20in%20diffusion%20quantum%20Monte%20Carlo?&rft.jtitle=J.%20Chem.%20Phys.;%20(United%20States)&rft.au=REYNOLDS,%20P.%20J&rft.aucorp=Materials%20and%20Chemical%20Sciences%20Division,%20Lawrence%20Berkeley%20Laboratory,%20University%20of%20California,%20Berkeley,%20California%2094720&rft.date=1987-08-01&rft.volume=87&rft.issue=3&rft.spage=1905&rft.epage=1906&rft.pages=1905-1906&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.453213&rft_dat=%3Cpascalfrancis_osti_%3E7646391%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |