Is there a zeroth order time-step error in diffusion quantum Monte Carlo?

It is demonstrated that the short-time Green’s function often used in diffusion quantum Monte Carlo simulations of the Schrödinger equation generates an unbiased probability distribution in the limit of vanishing time step τ. For finite τ, an error is introduced into the potential which is of O(τ)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Chem. Phys.; (United States) 1987-08, Vol.87 (3), p.1905-1906
Hauptverfasser: REYNOLDS, P. J, OWEN, R. K, LESTER, W. A. JR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1906
container_issue 3
container_start_page 1905
container_title J. Chem. Phys.; (United States)
container_volume 87
creator REYNOLDS, P. J
OWEN, R. K
LESTER, W. A. JR
description It is demonstrated that the short-time Green’s function often used in diffusion quantum Monte Carlo simulations of the Schrödinger equation generates an unbiased probability distribution in the limit of vanishing time step τ. For finite τ, an error is introduced into the potential which is of O(τ). An expression for this term is derived.
doi_str_mv 10.1063/1.453213
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_453213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7646391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-e2983093d1e5214edf00a928dcf5c35635d746f1a5758fa10d1b13de801fac7b3</originalsourceid><addsrcrecordid>eNo90E1LAzEUheEgCtYq-BOCuHAz9d7JJDNZiRQ_ChU3uh7S5IZG2klN0oX-eisjrs7m4Sxexi4RZghK3OKskaJGccQmCJ2uWqXhmE0Aaqy0AnXKznL-AABs62bCFovMy5oSccO_KcWy5jE5SryELVW50I5TSjHxMHAXvN_nEAf-uTdD2W_5SxwK8blJm3h3zk682WS6-Nspe398eJs_V8vXp8X8fllZgbJUVOtOgBYOSdbYkPMARteds15aIZWQrm2URyNb2XmD4HCFwlEH6I1tV2LKrsbfmEvosw2F7NrGYSBbetV0Wgs4oJsR2RRzTuT7XQpbk756hP63U4_92OlAr0e6M9majU9msCH_-1Y1SmgUP-hJZYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Is there a zeroth order time-step error in diffusion quantum Monte Carlo?</title><source>AIP Digital Archive</source><creator>REYNOLDS, P. J ; OWEN, R. K ; LESTER, W. A. JR</creator><creatorcontrib>REYNOLDS, P. J ; OWEN, R. K ; LESTER, W. A. JR ; Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720</creatorcontrib><description>It is demonstrated that the short-time Green’s function often used in diffusion quantum Monte Carlo simulations of the Schrödinger equation generates an unbiased probability distribution in the limit of vanishing time step τ. For finite τ, an error is introduced into the potential which is of O(τ). An expression for this term is derived.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.453213</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>657000 - Theoretical &amp; Mathematical Physics ; ANALYTICAL SOLUTION ; Atomic and molecular physics ; Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFERENTIAL EQUATIONS ; DIFFUSION ; Electronic structure of atoms, molecules and their ions: theory ; EQUATIONS ; ERRORS ; Exact sciences and technology ; FUNCTIONS ; GREEN FUNCTION ; MONTE CARLO METHOD ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; SCHROEDINGER EQUATION ; WAVE EQUATIONS</subject><ispartof>J. Chem. Phys.; (United States), 1987-08, Vol.87 (3), p.1905-1906</ispartof><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-e2983093d1e5214edf00a928dcf5c35635d746f1a5758fa10d1b13de801fac7b3</citedby><cites>FETCH-LOGICAL-c315t-e2983093d1e5214edf00a928dcf5c35635d746f1a5758fa10d1b13de801fac7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7646391$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6489930$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>REYNOLDS, P. J</creatorcontrib><creatorcontrib>OWEN, R. K</creatorcontrib><creatorcontrib>LESTER, W. A. JR</creatorcontrib><creatorcontrib>Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720</creatorcontrib><title>Is there a zeroth order time-step error in diffusion quantum Monte Carlo?</title><title>J. Chem. Phys.; (United States)</title><description>It is demonstrated that the short-time Green’s function often used in diffusion quantum Monte Carlo simulations of the Schrödinger equation generates an unbiased probability distribution in the limit of vanishing time step τ. For finite τ, an error is introduced into the potential which is of O(τ). An expression for this term is derived.</description><subject>657000 - Theoretical &amp; Mathematical Physics</subject><subject>ANALYTICAL SOLUTION</subject><subject>Atomic and molecular physics</subject><subject>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DIFFUSION</subject><subject>Electronic structure of atoms, molecules and their ions: theory</subject><subject>EQUATIONS</subject><subject>ERRORS</subject><subject>Exact sciences and technology</subject><subject>FUNCTIONS</subject><subject>GREEN FUNCTION</subject><subject>MONTE CARLO METHOD</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>SCHROEDINGER EQUATION</subject><subject>WAVE EQUATIONS</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNo90E1LAzEUheEgCtYq-BOCuHAz9d7JJDNZiRQ_ChU3uh7S5IZG2klN0oX-eisjrs7m4Sxexi4RZghK3OKskaJGccQmCJ2uWqXhmE0Aaqy0AnXKznL-AABs62bCFovMy5oSccO_KcWy5jE5SryELVW50I5TSjHxMHAXvN_nEAf-uTdD2W_5SxwK8blJm3h3zk682WS6-Nspe398eJs_V8vXp8X8fllZgbJUVOtOgBYOSdbYkPMARteds15aIZWQrm2URyNb2XmD4HCFwlEH6I1tV2LKrsbfmEvosw2F7NrGYSBbetV0Wgs4oJsR2RRzTuT7XQpbk756hP63U4_92OlAr0e6M9majU9msCH_-1Y1SmgUP-hJZYw</recordid><startdate>19870801</startdate><enddate>19870801</enddate><creator>REYNOLDS, P. J</creator><creator>OWEN, R. K</creator><creator>LESTER, W. A. JR</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19870801</creationdate><title>Is there a zeroth order time-step error in diffusion quantum Monte Carlo?</title><author>REYNOLDS, P. J ; OWEN, R. K ; LESTER, W. A. JR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-e2983093d1e5214edf00a928dcf5c35635d746f1a5758fa10d1b13de801fac7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>657000 - Theoretical &amp; Mathematical Physics</topic><topic>ANALYTICAL SOLUTION</topic><topic>Atomic and molecular physics</topic><topic>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DIFFUSION</topic><topic>Electronic structure of atoms, molecules and their ions: theory</topic><topic>EQUATIONS</topic><topic>ERRORS</topic><topic>Exact sciences and technology</topic><topic>FUNCTIONS</topic><topic>GREEN FUNCTION</topic><topic>MONTE CARLO METHOD</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>SCHROEDINGER EQUATION</topic><topic>WAVE EQUATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>REYNOLDS, P. J</creatorcontrib><creatorcontrib>OWEN, R. K</creatorcontrib><creatorcontrib>LESTER, W. A. JR</creatorcontrib><creatorcontrib>Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Chem. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>REYNOLDS, P. J</au><au>OWEN, R. K</au><au>LESTER, W. A. JR</au><aucorp>Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is there a zeroth order time-step error in diffusion quantum Monte Carlo?</atitle><jtitle>J. Chem. Phys.; (United States)</jtitle><date>1987-08-01</date><risdate>1987</risdate><volume>87</volume><issue>3</issue><spage>1905</spage><epage>1906</epage><pages>1905-1906</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>It is demonstrated that the short-time Green’s function often used in diffusion quantum Monte Carlo simulations of the Schrödinger equation generates an unbiased probability distribution in the limit of vanishing time step τ. For finite τ, an error is introduced into the potential which is of O(τ). An expression for this term is derived.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.453213</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof J. Chem. Phys.; (United States), 1987-08, Vol.87 (3), p.1905-1906
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_453213
source AIP Digital Archive
subjects 657000 - Theoretical & Mathematical Physics
ANALYTICAL SOLUTION
Atomic and molecular physics
Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DIFFERENTIAL EQUATIONS
DIFFUSION
Electronic structure of atoms, molecules and their ions: theory
EQUATIONS
ERRORS
Exact sciences and technology
FUNCTIONS
GREEN FUNCTION
MONTE CARLO METHOD
PARTIAL DIFFERENTIAL EQUATIONS
Physics
SCHROEDINGER EQUATION
WAVE EQUATIONS
title Is there a zeroth order time-step error in diffusion quantum Monte Carlo?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20there%20a%20zeroth%20order%20time-step%20error%20in%20diffusion%20quantum%20Monte%20Carlo?&rft.jtitle=J.%20Chem.%20Phys.;%20(United%20States)&rft.au=REYNOLDS,%20P.%20J&rft.aucorp=Materials%20and%20Chemical%20Sciences%20Division,%20Lawrence%20Berkeley%20Laboratory,%20University%20of%20California,%20Berkeley,%20California%2094720&rft.date=1987-08-01&rft.volume=87&rft.issue=3&rft.spage=1905&rft.epage=1906&rft.pages=1905-1906&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.453213&rft_dat=%3Cpascalfrancis_osti_%3E7646391%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true