Analysis of periodic perturbations of limit cycles

An algorithm due to Loud is used to find asymptotically convergent series solutions for limit cycles subjected to weak periodic perturbations. If an exact or approximate solution to the unperturbed limit cycle is available near or far from marginal stability, then accurate predictions can be made fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Chem. Phys.; (United States) 1983-03, Vol.78 (6), p.3747-3755
Hauptverfasser: Rehmus, Paul, Ross, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3755
container_issue 6
container_start_page 3747
container_title J. Chem. Phys.; (United States)
container_volume 78
creator Rehmus, Paul
Ross, John
description An algorithm due to Loud is used to find asymptotically convergent series solutions for limit cycles subjected to weak periodic perturbations. If an exact or approximate solution to the unperturbed limit cycle is available near or far from marginal stability, then accurate predictions can be made for entrainment bands and the phase relationships between the various oscillatory chemical species and the perturbation. The utility of this method is shown for several model systems. In an appendix, the appearance and character of critical slowing down at the edges of entrainment bands is demonstrated.
doi_str_mv 10.1063/1.445150
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_445150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_445150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-3eb9247641cd18243638d7ae9b0a7c16ae6052b0e3236b38c17ae10924f6cd873</originalsourceid><addsrcrecordid>eNotUE1LxDAUDKJgXQV_QvHkpet7-Wp6XBZdhQUveg7pa4qRbrsk8dB_b9f1NAPzATOM3SOsEbR4wrWUChVcsALBNFWtG7hkBQDHqtGgr9lNSt8AgDWXBeOb0Q1zCqmc-vLoY5i6QCeSf2LrcpjGP2UIh5BLmmnw6ZZd9W5I_u4fV-zz5flj-1rt33dv282-Iq54roRvGy5rLZE6NFwKLUxXO9-04GpC7bwGxVvwggvdCkO4iAhLptfUmVqs2MO5d0o52EQhe_qiaRw9ZauUWebKxfR4NlGcUoq-t8cYDi7OFsGeDrFoz4eIX6-oUJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of periodic perturbations of limit cycles</title><source>AIP Digital Archive</source><creator>Rehmus, Paul ; Ross, John</creator><creatorcontrib>Rehmus, Paul ; Ross, John ; Department of Chemistry, Stanford University, Stanford, California 94305</creatorcontrib><description>An algorithm due to Loud is used to find asymptotically convergent series solutions for limit cycles subjected to weak periodic perturbations. If an exact or approximate solution to the unperturbed limit cycle is available near or far from marginal stability, then accurate predictions can be made for entrainment bands and the phase relationships between the various oscillatory chemical species and the perturbation. The utility of this method is shown for several model systems. In an appendix, the appearance and character of critical slowing down at the edges of entrainment bands is demonstrated.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.445150</identifier><language>eng</language><publisher>United States</publisher><subject>400201 - Chemical &amp; Physicochemical Properties ; CHEMICAL REACTION KINETICS ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; KINETICS ; OSCILLATIONS ; QUANTITY RATIO ; REACTION INTERMEDIATES ; REACTION KINETICS</subject><ispartof>J. Chem. Phys.; (United States), 1983-03, Vol.78 (6), p.3747-3755</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-3eb9247641cd18243638d7ae9b0a7c16ae6052b0e3236b38c17ae10924f6cd873</citedby><cites>FETCH-LOGICAL-c252t-3eb9247641cd18243638d7ae9b0a7c16ae6052b0e3236b38c17ae10924f6cd873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5581064$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rehmus, Paul</creatorcontrib><creatorcontrib>Ross, John</creatorcontrib><creatorcontrib>Department of Chemistry, Stanford University, Stanford, California 94305</creatorcontrib><title>Analysis of periodic perturbations of limit cycles</title><title>J. Chem. Phys.; (United States)</title><description>An algorithm due to Loud is used to find asymptotically convergent series solutions for limit cycles subjected to weak periodic perturbations. If an exact or approximate solution to the unperturbed limit cycle is available near or far from marginal stability, then accurate predictions can be made for entrainment bands and the phase relationships between the various oscillatory chemical species and the perturbation. The utility of this method is shown for several model systems. In an appendix, the appearance and character of critical slowing down at the edges of entrainment bands is demonstrated.</description><subject>400201 - Chemical &amp; Physicochemical Properties</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>KINETICS</subject><subject>OSCILLATIONS</subject><subject>QUANTITY RATIO</subject><subject>REACTION INTERMEDIATES</subject><subject>REACTION KINETICS</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNotUE1LxDAUDKJgXQV_QvHkpet7-Wp6XBZdhQUveg7pa4qRbrsk8dB_b9f1NAPzATOM3SOsEbR4wrWUChVcsALBNFWtG7hkBQDHqtGgr9lNSt8AgDWXBeOb0Q1zCqmc-vLoY5i6QCeSf2LrcpjGP2UIh5BLmmnw6ZZd9W5I_u4fV-zz5flj-1rt33dv282-Iq54roRvGy5rLZE6NFwKLUxXO9-04GpC7bwGxVvwggvdCkO4iAhLptfUmVqs2MO5d0o52EQhe_qiaRw9ZauUWebKxfR4NlGcUoq-t8cYDi7OFsGeDrFoz4eIX6-oUJw</recordid><startdate>19830315</startdate><enddate>19830315</enddate><creator>Rehmus, Paul</creator><creator>Ross, John</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19830315</creationdate><title>Analysis of periodic perturbations of limit cycles</title><author>Rehmus, Paul ; Ross, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-3eb9247641cd18243638d7ae9b0a7c16ae6052b0e3236b38c17ae10924f6cd873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>400201 - Chemical &amp; Physicochemical Properties</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>KINETICS</topic><topic>OSCILLATIONS</topic><topic>QUANTITY RATIO</topic><topic>REACTION INTERMEDIATES</topic><topic>REACTION KINETICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehmus, Paul</creatorcontrib><creatorcontrib>Ross, John</creatorcontrib><creatorcontrib>Department of Chemistry, Stanford University, Stanford, California 94305</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Chem. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehmus, Paul</au><au>Ross, John</au><aucorp>Department of Chemistry, Stanford University, Stanford, California 94305</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of periodic perturbations of limit cycles</atitle><jtitle>J. Chem. Phys.; (United States)</jtitle><date>1983-03-15</date><risdate>1983</risdate><volume>78</volume><issue>6</issue><spage>3747</spage><epage>3755</epage><pages>3747-3755</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>An algorithm due to Loud is used to find asymptotically convergent series solutions for limit cycles subjected to weak periodic perturbations. If an exact or approximate solution to the unperturbed limit cycle is available near or far from marginal stability, then accurate predictions can be made for entrainment bands and the phase relationships between the various oscillatory chemical species and the perturbation. The utility of this method is shown for several model systems. In an appendix, the appearance and character of critical slowing down at the edges of entrainment bands is demonstrated.</abstract><cop>United States</cop><doi>10.1063/1.445150</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof J. Chem. Phys.; (United States), 1983-03, Vol.78 (6), p.3747-3755
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_445150
source AIP Digital Archive
subjects 400201 - Chemical & Physicochemical Properties
CHEMICAL REACTION KINETICS
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
KINETICS
OSCILLATIONS
QUANTITY RATIO
REACTION INTERMEDIATES
REACTION KINETICS
title Analysis of periodic perturbations of limit cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20periodic%20perturbations%20of%20limit%20cycles&rft.jtitle=J.%20Chem.%20Phys.;%20(United%20States)&rft.au=Rehmus,%20Paul&rft.aucorp=Department%20of%20Chemistry,%20Stanford%20University,%20Stanford,%20California%2094305&rft.date=1983-03-15&rft.volume=78&rft.issue=6&rft.spage=3747&rft.epage=3755&rft.pages=3747-3755&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.445150&rft_dat=%3Ccrossref_osti_%3E10_1063_1_445150%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true