Energy diffusion-controlled reactions in solution

The energy diffusion-controlled limit for reactions in solution is discussed for anharmonic oscillator models of isomerization and dissociation-recombination. Energy diffusion is described by an equation due to Zwanzig. The vibrational energy diffusion coefficient in this equation is related to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1982-01, Vol.77 (7), p.3736-3743
Hauptverfasser: Grote, Richard F., Hynes, James T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3743
container_issue 7
container_start_page 3736
container_title The Journal of chemical physics
container_volume 77
creator Grote, Richard F.
Hynes, James T.
description The energy diffusion-controlled limit for reactions in solution is discussed for anharmonic oscillator models of isomerization and dissociation-recombination. Energy diffusion is described by an equation due to Zwanzig. The vibrational energy diffusion coefficient in this equation is related to the spectrum of solvent forces on the oscillator probed at its unperturbed frequencies. The energy diffusion-controlled rate constants k are calculated. For small barrier heights, k is severely depressed by inefficient, adiabatic regime vibrational energy transfer. For large barrier heights, the important energy flow region lies in the more efficient nonadiabatic vibrational energy transfer regime, and k is much larger. The relevance of our results for solution reactions is discussed.
doi_str_mv 10.1063/1.444277
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_444277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_444277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-80c2e4adc377ab0a6c154433847237a182d607e26e7de32cc8f6c500f38f8b143</originalsourceid><addsrcrecordid>eNotj8FKAzEURYMoOFbBT5ilm9T38tK8zFJKtULBja5DmklkZJxIMl3077XU1eGexYUjxD3CEsHQIy611or5QjQItpNsOrgUDYBC2Rkw1-Km1i8AQFa6EbiZYvk8tv2Q0qEOeZIhT3PJ4xj7tkQf5j9X22Fqax4Pp3ErrpIfa7z750J8PG_e11u5e3t5XT_tZCDVzdJCUFH7PhCz34M3AVdaE1nNitijVb0BjspE7iOpEGwyYQWQyCa7R00L8XD-DSXXWmJyP2X49uXoENwp1aE7p9IvyY5FMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energy diffusion-controlled reactions in solution</title><source>AIP Digital Archive</source><creator>Grote, Richard F. ; Hynes, James T.</creator><creatorcontrib>Grote, Richard F. ; Hynes, James T.</creatorcontrib><description>The energy diffusion-controlled limit for reactions in solution is discussed for anharmonic oscillator models of isomerization and dissociation-recombination. Energy diffusion is described by an equation due to Zwanzig. The vibrational energy diffusion coefficient in this equation is related to the spectrum of solvent forces on the oscillator probed at its unperturbed frequencies. The energy diffusion-controlled rate constants k are calculated. For small barrier heights, k is severely depressed by inefficient, adiabatic regime vibrational energy transfer. For large barrier heights, the important energy flow region lies in the more efficient nonadiabatic vibrational energy transfer regime, and k is much larger. The relevance of our results for solution reactions is discussed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.444277</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1982-01, Vol.77 (7), p.3736-3743</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-80c2e4adc377ab0a6c154433847237a182d607e26e7de32cc8f6c500f38f8b143</citedby><cites>FETCH-LOGICAL-c329t-80c2e4adc377ab0a6c154433847237a182d607e26e7de32cc8f6c500f38f8b143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Grote, Richard F.</creatorcontrib><creatorcontrib>Hynes, James T.</creatorcontrib><title>Energy diffusion-controlled reactions in solution</title><title>The Journal of chemical physics</title><description>The energy diffusion-controlled limit for reactions in solution is discussed for anharmonic oscillator models of isomerization and dissociation-recombination. Energy diffusion is described by an equation due to Zwanzig. The vibrational energy diffusion coefficient in this equation is related to the spectrum of solvent forces on the oscillator probed at its unperturbed frequencies. The energy diffusion-controlled rate constants k are calculated. For small barrier heights, k is severely depressed by inefficient, adiabatic regime vibrational energy transfer. For large barrier heights, the important energy flow region lies in the more efficient nonadiabatic vibrational energy transfer regime, and k is much larger. The relevance of our results for solution reactions is discussed.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNotj8FKAzEURYMoOFbBT5ilm9T38tK8zFJKtULBja5DmklkZJxIMl3077XU1eGexYUjxD3CEsHQIy611or5QjQItpNsOrgUDYBC2Rkw1-Km1i8AQFa6EbiZYvk8tv2Q0qEOeZIhT3PJ4xj7tkQf5j9X22Fqax4Pp3ErrpIfa7z750J8PG_e11u5e3t5XT_tZCDVzdJCUFH7PhCz34M3AVdaE1nNitijVb0BjspE7iOpEGwyYQWQyCa7R00L8XD-DSXXWmJyP2X49uXoENwp1aE7p9IvyY5FMw</recordid><startdate>19820101</startdate><enddate>19820101</enddate><creator>Grote, Richard F.</creator><creator>Hynes, James T.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19820101</creationdate><title>Energy diffusion-controlled reactions in solution</title><author>Grote, Richard F. ; Hynes, James T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-80c2e4adc377ab0a6c154433847237a182d607e26e7de32cc8f6c500f38f8b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grote, Richard F.</creatorcontrib><creatorcontrib>Hynes, James T.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grote, Richard F.</au><au>Hynes, James T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy diffusion-controlled reactions in solution</atitle><jtitle>The Journal of chemical physics</jtitle><date>1982-01-01</date><risdate>1982</risdate><volume>77</volume><issue>7</issue><spage>3736</spage><epage>3743</epage><pages>3736-3743</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The energy diffusion-controlled limit for reactions in solution is discussed for anharmonic oscillator models of isomerization and dissociation-recombination. Energy diffusion is described by an equation due to Zwanzig. The vibrational energy diffusion coefficient in this equation is related to the spectrum of solvent forces on the oscillator probed at its unperturbed frequencies. The energy diffusion-controlled rate constants k are calculated. For small barrier heights, k is severely depressed by inefficient, adiabatic regime vibrational energy transfer. For large barrier heights, the important energy flow region lies in the more efficient nonadiabatic vibrational energy transfer regime, and k is much larger. The relevance of our results for solution reactions is discussed.</abstract><doi>10.1063/1.444277</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1982-01, Vol.77 (7), p.3736-3743
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_444277
source AIP Digital Archive
title Energy diffusion-controlled reactions in solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20diffusion-controlled%20reactions%20in%20solution&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Grote,%20Richard%20F.&rft.date=1982-01-01&rft.volume=77&rft.issue=7&rft.spage=3736&rft.epage=3743&rft.pages=3736-3743&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.444277&rft_dat=%3Ccrossref%3E10_1063_1_444277%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true