A mean free path kinetic theory of void diffusion in a porous medium with surface diffusion. Asymptotic expansion in the Knudsen number

A mean free path kinetic theory of void transport with Fickian diffusion on the pore walls has been developed for diffusion in a porous medium. A variational upper bound expression for the effective dissusion coefficient for a bed of overlapping solid spheres is expanded asymptotically including ter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1981-04, Vol.74 (8), p.4742-4744
Hauptverfasser: Ho, Fun Gau, Strieder, William
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4744
container_issue 8
container_start_page 4742
container_title The Journal of chemical physics
container_volume 74
creator Ho, Fun Gau
Strieder, William
description A mean free path kinetic theory of void transport with Fickian diffusion on the pore walls has been developed for diffusion in a porous medium. A variational upper bound expression for the effective dissusion coefficient for a bed of overlapping solid spheres is expanded asymptotically including terms to third order in the Knudsen number. The effects of tortuosity are rigorously considered by explicitly including the flux of diffusing material around obstructions in its path in the trial functions. Parallel addition of void and surface diffusivities appears to be a good approximation of the variational effective diffusivity equation for all porosities less than 0.70 and small Knudsen number. For small void fractions, the terms of the asymptotic expansion can be summed to give the simple parallel in surface, but series in Knudsen and bulk diffusivities combination in analytical form. (AIP)
doi_str_mv 10.1063/1.441626
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_441626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_441626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c142t-bbe44a0040bde2efcb795e86aaf5cee77b26082a07d1cc8ecf3b0a78097f69113</originalsourceid><addsrcrecordid>eNpFkL1OwzAURi0EEqUg8Qh3ZEm5dlI7GauKP1GJBebIca5VA7EjOwHyBLw2rQpi-pbvnOEwdslxwVHm13xRFFwKecRmHMsqU7LCYzZDFDyrJMpTdpbSKyJyJYoZ-15BR9qDjUTQ62ELb87T4AwMWwpxgmDhI7gWWmftmFzw4Dxo6EMMY9qxrRs7-HQ7MI3RakP_zwWs0tT1Q9jr6KvX_o_fueHRj20iD37sGorn7MTq90QXvztnL7c3z-v7bPN097BebTLDCzFkTUNFoRELbFoSZE2jqiWVUmu7NERKNUJiKTSqlhtTkrF5g1qVWCkrK87zObs6eE0MKUWydR9dp-NUc6z3AWteHwLmP-27ZbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A mean free path kinetic theory of void diffusion in a porous medium with surface diffusion. Asymptotic expansion in the Knudsen number</title><source>AIP Digital Archive</source><creator>Ho, Fun Gau ; Strieder, William</creator><creatorcontrib>Ho, Fun Gau ; Strieder, William</creatorcontrib><description>A mean free path kinetic theory of void transport with Fickian diffusion on the pore walls has been developed for diffusion in a porous medium. A variational upper bound expression for the effective dissusion coefficient for a bed of overlapping solid spheres is expanded asymptotically including terms to third order in the Knudsen number. The effects of tortuosity are rigorously considered by explicitly including the flux of diffusing material around obstructions in its path in the trial functions. Parallel addition of void and surface diffusivities appears to be a good approximation of the variational effective diffusivity equation for all porosities less than 0.70 and small Knudsen number. For small void fractions, the terms of the asymptotic expansion can be summed to give the simple parallel in surface, but series in Knudsen and bulk diffusivities combination in analytical form. (AIP)</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.441626</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1981-04, Vol.74 (8), p.4742-4744</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c142t-bbe44a0040bde2efcb795e86aaf5cee77b26082a07d1cc8ecf3b0a78097f69113</citedby><cites>FETCH-LOGICAL-c142t-bbe44a0040bde2efcb795e86aaf5cee77b26082a07d1cc8ecf3b0a78097f69113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ho, Fun Gau</creatorcontrib><creatorcontrib>Strieder, William</creatorcontrib><title>A mean free path kinetic theory of void diffusion in a porous medium with surface diffusion. Asymptotic expansion in the Knudsen number</title><title>The Journal of chemical physics</title><description>A mean free path kinetic theory of void transport with Fickian diffusion on the pore walls has been developed for diffusion in a porous medium. A variational upper bound expression for the effective dissusion coefficient for a bed of overlapping solid spheres is expanded asymptotically including terms to third order in the Knudsen number. The effects of tortuosity are rigorously considered by explicitly including the flux of diffusing material around obstructions in its path in the trial functions. Parallel addition of void and surface diffusivities appears to be a good approximation of the variational effective diffusivity equation for all porosities less than 0.70 and small Knudsen number. For small void fractions, the terms of the asymptotic expansion can be summed to give the simple parallel in surface, but series in Knudsen and bulk diffusivities combination in analytical form. (AIP)</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNpFkL1OwzAURi0EEqUg8Qh3ZEm5dlI7GauKP1GJBebIca5VA7EjOwHyBLw2rQpi-pbvnOEwdslxwVHm13xRFFwKecRmHMsqU7LCYzZDFDyrJMpTdpbSKyJyJYoZ-15BR9qDjUTQ62ELb87T4AwMWwpxgmDhI7gWWmftmFzw4Dxo6EMMY9qxrRs7-HQ7MI3RakP_zwWs0tT1Q9jr6KvX_o_fueHRj20iD37sGorn7MTq90QXvztnL7c3z-v7bPN097BebTLDCzFkTUNFoRELbFoSZE2jqiWVUmu7NERKNUJiKTSqlhtTkrF5g1qVWCkrK87zObs6eE0MKUWydR9dp-NUc6z3AWteHwLmP-27ZbA</recordid><startdate>19810415</startdate><enddate>19810415</enddate><creator>Ho, Fun Gau</creator><creator>Strieder, William</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19810415</creationdate><title>A mean free path kinetic theory of void diffusion in a porous medium with surface diffusion. Asymptotic expansion in the Knudsen number</title><author>Ho, Fun Gau ; Strieder, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c142t-bbe44a0040bde2efcb795e86aaf5cee77b26082a07d1cc8ecf3b0a78097f69113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Fun Gau</creatorcontrib><creatorcontrib>Strieder, William</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Fun Gau</au><au>Strieder, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mean free path kinetic theory of void diffusion in a porous medium with surface diffusion. Asymptotic expansion in the Knudsen number</atitle><jtitle>The Journal of chemical physics</jtitle><date>1981-04-15</date><risdate>1981</risdate><volume>74</volume><issue>8</issue><spage>4742</spage><epage>4744</epage><pages>4742-4744</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>A mean free path kinetic theory of void transport with Fickian diffusion on the pore walls has been developed for diffusion in a porous medium. A variational upper bound expression for the effective dissusion coefficient for a bed of overlapping solid spheres is expanded asymptotically including terms to third order in the Knudsen number. The effects of tortuosity are rigorously considered by explicitly including the flux of diffusing material around obstructions in its path in the trial functions. Parallel addition of void and surface diffusivities appears to be a good approximation of the variational effective diffusivity equation for all porosities less than 0.70 and small Knudsen number. For small void fractions, the terms of the asymptotic expansion can be summed to give the simple parallel in surface, but series in Knudsen and bulk diffusivities combination in analytical form. (AIP)</abstract><doi>10.1063/1.441626</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 1981-04, Vol.74 (8), p.4742-4744
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_441626
source AIP Digital Archive
title A mean free path kinetic theory of void diffusion in a porous medium with surface diffusion. Asymptotic expansion in the Knudsen number
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mean%20free%20path%20kinetic%20theory%20of%20void%20diffusion%20in%20a%20porous%20medium%20with%20surface%20diffusion.%20Asymptotic%20expansion%20in%20the%20Knudsen%20number&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ho,%20Fun%20Gau&rft.date=1981-04-15&rft.volume=74&rft.issue=8&rft.spage=4742&rft.epage=4744&rft.pages=4742-4744&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.441626&rft_dat=%3Ccrossref%3E10_1063_1_441626%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true