Rotational relaxation in sonic nozzle expansions

The thermal conduction model for cooling in sonic nozzle expansions is extended to rotational degrees of freedom. Unimolecular decomposition theory, as applied to collision complexes, provides a natural formalism for describing the rotational–translational coupling. Simple expressions are presented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Chem. Phys.; (United States) 1980-01, Vol.72 (1), p.192-197
1. Verfasser: Klots, Cornelius E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 1
container_start_page 192
container_title J. Chem. Phys.; (United States)
container_volume 72
creator Klots, Cornelius E.
description The thermal conduction model for cooling in sonic nozzle expansions is extended to rotational degrees of freedom. Unimolecular decomposition theory, as applied to collision complexes, provides a natural formalism for describing the rotational–translational coupling. Simple expressions are presented for the terminal ’’temperatures’’ as functions of the source parameters and the relevant long-range r−6 potential. Extensions to other potentials and to vibrational relaxation are indicated.
doi_str_mv 10.1063/1.438902
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_438902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_438902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-53ea8460676798a9ff84bbf6760c5626ef779bc534ceff63971998eae1ef7f163</originalsourceid><addsrcrecordid>eNotkE1LxDAYhIMoWFfBn1A8een6Jmm-jrLoKiwIoueQhjcYqcnS5LDur7daT8MwDzMwhFxTWFOQ_I6ue64NsBPSUNCmU9LAKWkAGO2MBHlOLkr5BACqWN8QeM3V1ZiTG9sJR3f4M21Mbckp-jbl43HEFg97l8qclEtyFtxY8OpfV-T98eFt89TtXrbPm_td55lgtRMcne7nPSWV0c6EoPthCLMFLySTGJQygxe89xiC5EZRYzQ6pHMSqOQrcrP05lKjLT5W9B8-p4S-WiG50FrP0O0C-SmXMmGw-yl-uenbUrC_d1hqlzv4D4RaUQE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rotational relaxation in sonic nozzle expansions</title><source>AIP Digital Archive</source><creator>Klots, Cornelius E.</creator><creatorcontrib>Klots, Cornelius E. ; Chemical Physics Section, Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830</creatorcontrib><description>The thermal conduction model for cooling in sonic nozzle expansions is extended to rotational degrees of freedom. Unimolecular decomposition theory, as applied to collision complexes, provides a natural formalism for describing the rotational–translational coupling. Simple expressions are presented for the terminal ’’temperatures’’ as functions of the source parameters and the relevant long-range r−6 potential. Extensions to other potentials and to vibrational relaxation are indicated.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.438902</identifier><language>eng</language><publisher>United States</publisher><subject>640302 - Atomic, Molecular &amp; Chemical Physics- Atomic &amp; Molecular Properties &amp; Theory ; ATOMIC AND MOLECULAR PHYSICS ; BEAMS ; COOLING ; ENERGY LEVELS ; ENERGY TRANSFER ; EXCITED STATES ; EXPANSION ; FLUID FLOW ; GAS FLOW ; HEAT TRANSFER ; MOLECULAR BEAMS ; NOZZLES ; RELAXATION ; ROTATIONAL STATES ; THERMAL CONDUCTION ; VIBRATIONAL STATES</subject><ispartof>J. Chem. Phys.; (United States), 1980-01, Vol.72 (1), p.192-197</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-53ea8460676798a9ff84bbf6760c5626ef779bc534ceff63971998eae1ef7f163</citedby><cites>FETCH-LOGICAL-c252t-53ea8460676798a9ff84bbf6760c5626ef779bc534ceff63971998eae1ef7f163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5635888$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Klots, Cornelius E.</creatorcontrib><creatorcontrib>Chemical Physics Section, Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830</creatorcontrib><title>Rotational relaxation in sonic nozzle expansions</title><title>J. Chem. Phys.; (United States)</title><description>The thermal conduction model for cooling in sonic nozzle expansions is extended to rotational degrees of freedom. Unimolecular decomposition theory, as applied to collision complexes, provides a natural formalism for describing the rotational–translational coupling. Simple expressions are presented for the terminal ’’temperatures’’ as functions of the source parameters and the relevant long-range r−6 potential. Extensions to other potentials and to vibrational relaxation are indicated.</description><subject>640302 - Atomic, Molecular &amp; Chemical Physics- Atomic &amp; Molecular Properties &amp; Theory</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>BEAMS</subject><subject>COOLING</subject><subject>ENERGY LEVELS</subject><subject>ENERGY TRANSFER</subject><subject>EXCITED STATES</subject><subject>EXPANSION</subject><subject>FLUID FLOW</subject><subject>GAS FLOW</subject><subject>HEAT TRANSFER</subject><subject>MOLECULAR BEAMS</subject><subject>NOZZLES</subject><subject>RELAXATION</subject><subject>ROTATIONAL STATES</subject><subject>THERMAL CONDUCTION</subject><subject>VIBRATIONAL STATES</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAYhIMoWFfBn1A8een6Jmm-jrLoKiwIoueQhjcYqcnS5LDur7daT8MwDzMwhFxTWFOQ_I6ue64NsBPSUNCmU9LAKWkAGO2MBHlOLkr5BACqWN8QeM3V1ZiTG9sJR3f4M21Mbckp-jbl43HEFg97l8qclEtyFtxY8OpfV-T98eFt89TtXrbPm_td55lgtRMcne7nPSWV0c6EoPthCLMFLySTGJQygxe89xiC5EZRYzQ6pHMSqOQrcrP05lKjLT5W9B8-p4S-WiG50FrP0O0C-SmXMmGw-yl-uenbUrC_d1hqlzv4D4RaUQE</recordid><startdate>19800101</startdate><enddate>19800101</enddate><creator>Klots, Cornelius E.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19800101</creationdate><title>Rotational relaxation in sonic nozzle expansions</title><author>Klots, Cornelius E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-53ea8460676798a9ff84bbf6760c5626ef779bc534ceff63971998eae1ef7f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>640302 - Atomic, Molecular &amp; Chemical Physics- Atomic &amp; Molecular Properties &amp; Theory</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>BEAMS</topic><topic>COOLING</topic><topic>ENERGY LEVELS</topic><topic>ENERGY TRANSFER</topic><topic>EXCITED STATES</topic><topic>EXPANSION</topic><topic>FLUID FLOW</topic><topic>GAS FLOW</topic><topic>HEAT TRANSFER</topic><topic>MOLECULAR BEAMS</topic><topic>NOZZLES</topic><topic>RELAXATION</topic><topic>ROTATIONAL STATES</topic><topic>THERMAL CONDUCTION</topic><topic>VIBRATIONAL STATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klots, Cornelius E.</creatorcontrib><creatorcontrib>Chemical Physics Section, Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Chem. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klots, Cornelius E.</au><aucorp>Chemical Physics Section, Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotational relaxation in sonic nozzle expansions</atitle><jtitle>J. Chem. Phys.; (United States)</jtitle><date>1980-01-01</date><risdate>1980</risdate><volume>72</volume><issue>1</issue><spage>192</spage><epage>197</epage><pages>192-197</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The thermal conduction model for cooling in sonic nozzle expansions is extended to rotational degrees of freedom. Unimolecular decomposition theory, as applied to collision complexes, provides a natural formalism for describing the rotational–translational coupling. Simple expressions are presented for the terminal ’’temperatures’’ as functions of the source parameters and the relevant long-range r−6 potential. Extensions to other potentials and to vibrational relaxation are indicated.</abstract><cop>United States</cop><doi>10.1063/1.438902</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof J. Chem. Phys.; (United States), 1980-01, Vol.72 (1), p.192-197
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_438902
source AIP Digital Archive
subjects 640302 - Atomic, Molecular & Chemical Physics- Atomic & Molecular Properties & Theory
ATOMIC AND MOLECULAR PHYSICS
BEAMS
COOLING
ENERGY LEVELS
ENERGY TRANSFER
EXCITED STATES
EXPANSION
FLUID FLOW
GAS FLOW
HEAT TRANSFER
MOLECULAR BEAMS
NOZZLES
RELAXATION
ROTATIONAL STATES
THERMAL CONDUCTION
VIBRATIONAL STATES
title Rotational relaxation in sonic nozzle expansions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotational%20relaxation%20in%20sonic%20nozzle%20expansions&rft.jtitle=J.%20Chem.%20Phys.;%20(United%20States)&rft.au=Klots,%20Cornelius%20E.&rft.aucorp=Chemical%20Physics%20Section,%20Health%20and%20Safety%20Research%20Division,%20Oak%20Ridge%20National%20Laboratory,%20Oak%20Ridge,%20Tennessee%2037830&rft.date=1980-01-01&rft.volume=72&rft.issue=1&rft.spage=192&rft.epage=197&rft.pages=192-197&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.438902&rft_dat=%3Ccrossref_osti_%3E10_1063_1_438902%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true