Rotational relaxation in sonic nozzle expansions
The thermal conduction model for cooling in sonic nozzle expansions is extended to rotational degrees of freedom. Unimolecular decomposition theory, as applied to collision complexes, provides a natural formalism for describing the rotational–translational coupling. Simple expressions are presented...
Gespeichert in:
Veröffentlicht in: | J. Chem. Phys.; (United States) 1980-01, Vol.72 (1), p.192-197 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | 1 |
container_start_page | 192 |
container_title | J. Chem. Phys.; (United States) |
container_volume | 72 |
creator | Klots, Cornelius E. |
description | The thermal conduction model for cooling in sonic nozzle expansions is extended to rotational degrees of freedom. Unimolecular decomposition theory, as applied to collision complexes, provides a natural formalism for describing the rotational–translational coupling. Simple expressions are presented for the terminal ’’temperatures’’ as functions of the source parameters and the relevant long-range r−6 potential. Extensions to other potentials and to vibrational relaxation are indicated. |
doi_str_mv | 10.1063/1.438902 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_438902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_438902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-53ea8460676798a9ff84bbf6760c5626ef779bc534ceff63971998eae1ef7f163</originalsourceid><addsrcrecordid>eNotkE1LxDAYhIMoWFfBn1A8een6Jmm-jrLoKiwIoueQhjcYqcnS5LDur7daT8MwDzMwhFxTWFOQ_I6ue64NsBPSUNCmU9LAKWkAGO2MBHlOLkr5BACqWN8QeM3V1ZiTG9sJR3f4M21Mbckp-jbl43HEFg97l8qclEtyFtxY8OpfV-T98eFt89TtXrbPm_td55lgtRMcne7nPSWV0c6EoPthCLMFLySTGJQygxe89xiC5EZRYzQ6pHMSqOQrcrP05lKjLT5W9B8-p4S-WiG50FrP0O0C-SmXMmGw-yl-uenbUrC_d1hqlzv4D4RaUQE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rotational relaxation in sonic nozzle expansions</title><source>AIP Digital Archive</source><creator>Klots, Cornelius E.</creator><creatorcontrib>Klots, Cornelius E. ; Chemical Physics Section, Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830</creatorcontrib><description>The thermal conduction model for cooling in sonic nozzle expansions is extended to rotational degrees of freedom. Unimolecular decomposition theory, as applied to collision complexes, provides a natural formalism for describing the rotational–translational coupling. Simple expressions are presented for the terminal ’’temperatures’’ as functions of the source parameters and the relevant long-range r−6 potential. Extensions to other potentials and to vibrational relaxation are indicated.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.438902</identifier><language>eng</language><publisher>United States</publisher><subject>640302 - Atomic, Molecular & Chemical Physics- Atomic & Molecular Properties & Theory ; ATOMIC AND MOLECULAR PHYSICS ; BEAMS ; COOLING ; ENERGY LEVELS ; ENERGY TRANSFER ; EXCITED STATES ; EXPANSION ; FLUID FLOW ; GAS FLOW ; HEAT TRANSFER ; MOLECULAR BEAMS ; NOZZLES ; RELAXATION ; ROTATIONAL STATES ; THERMAL CONDUCTION ; VIBRATIONAL STATES</subject><ispartof>J. Chem. Phys.; (United States), 1980-01, Vol.72 (1), p.192-197</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-53ea8460676798a9ff84bbf6760c5626ef779bc534ceff63971998eae1ef7f163</citedby><cites>FETCH-LOGICAL-c252t-53ea8460676798a9ff84bbf6760c5626ef779bc534ceff63971998eae1ef7f163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5635888$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Klots, Cornelius E.</creatorcontrib><creatorcontrib>Chemical Physics Section, Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830</creatorcontrib><title>Rotational relaxation in sonic nozzle expansions</title><title>J. Chem. Phys.; (United States)</title><description>The thermal conduction model for cooling in sonic nozzle expansions is extended to rotational degrees of freedom. Unimolecular decomposition theory, as applied to collision complexes, provides a natural formalism for describing the rotational–translational coupling. Simple expressions are presented for the terminal ’’temperatures’’ as functions of the source parameters and the relevant long-range r−6 potential. Extensions to other potentials and to vibrational relaxation are indicated.</description><subject>640302 - Atomic, Molecular & Chemical Physics- Atomic & Molecular Properties & Theory</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>BEAMS</subject><subject>COOLING</subject><subject>ENERGY LEVELS</subject><subject>ENERGY TRANSFER</subject><subject>EXCITED STATES</subject><subject>EXPANSION</subject><subject>FLUID FLOW</subject><subject>GAS FLOW</subject><subject>HEAT TRANSFER</subject><subject>MOLECULAR BEAMS</subject><subject>NOZZLES</subject><subject>RELAXATION</subject><subject>ROTATIONAL STATES</subject><subject>THERMAL CONDUCTION</subject><subject>VIBRATIONAL STATES</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAYhIMoWFfBn1A8een6Jmm-jrLoKiwIoueQhjcYqcnS5LDur7daT8MwDzMwhFxTWFOQ_I6ue64NsBPSUNCmU9LAKWkAGO2MBHlOLkr5BACqWN8QeM3V1ZiTG9sJR3f4M21Mbckp-jbl43HEFg97l8qclEtyFtxY8OpfV-T98eFt89TtXrbPm_td55lgtRMcne7nPSWV0c6EoPthCLMFLySTGJQygxe89xiC5EZRYzQ6pHMSqOQrcrP05lKjLT5W9B8-p4S-WiG50FrP0O0C-SmXMmGw-yl-uenbUrC_d1hqlzv4D4RaUQE</recordid><startdate>19800101</startdate><enddate>19800101</enddate><creator>Klots, Cornelius E.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19800101</creationdate><title>Rotational relaxation in sonic nozzle expansions</title><author>Klots, Cornelius E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-53ea8460676798a9ff84bbf6760c5626ef779bc534ceff63971998eae1ef7f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>640302 - Atomic, Molecular & Chemical Physics- Atomic & Molecular Properties & Theory</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>BEAMS</topic><topic>COOLING</topic><topic>ENERGY LEVELS</topic><topic>ENERGY TRANSFER</topic><topic>EXCITED STATES</topic><topic>EXPANSION</topic><topic>FLUID FLOW</topic><topic>GAS FLOW</topic><topic>HEAT TRANSFER</topic><topic>MOLECULAR BEAMS</topic><topic>NOZZLES</topic><topic>RELAXATION</topic><topic>ROTATIONAL STATES</topic><topic>THERMAL CONDUCTION</topic><topic>VIBRATIONAL STATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klots, Cornelius E.</creatorcontrib><creatorcontrib>Chemical Physics Section, Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Chem. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klots, Cornelius E.</au><aucorp>Chemical Physics Section, Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotational relaxation in sonic nozzle expansions</atitle><jtitle>J. Chem. Phys.; (United States)</jtitle><date>1980-01-01</date><risdate>1980</risdate><volume>72</volume><issue>1</issue><spage>192</spage><epage>197</epage><pages>192-197</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The thermal conduction model for cooling in sonic nozzle expansions is extended to rotational degrees of freedom. Unimolecular decomposition theory, as applied to collision complexes, provides a natural formalism for describing the rotational–translational coupling. Simple expressions are presented for the terminal ’’temperatures’’ as functions of the source parameters and the relevant long-range r−6 potential. Extensions to other potentials and to vibrational relaxation are indicated.</abstract><cop>United States</cop><doi>10.1063/1.438902</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | J. Chem. Phys.; (United States), 1980-01, Vol.72 (1), p.192-197 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_438902 |
source | AIP Digital Archive |
subjects | 640302 - Atomic, Molecular & Chemical Physics- Atomic & Molecular Properties & Theory ATOMIC AND MOLECULAR PHYSICS BEAMS COOLING ENERGY LEVELS ENERGY TRANSFER EXCITED STATES EXPANSION FLUID FLOW GAS FLOW HEAT TRANSFER MOLECULAR BEAMS NOZZLES RELAXATION ROTATIONAL STATES THERMAL CONDUCTION VIBRATIONAL STATES |
title | Rotational relaxation in sonic nozzle expansions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotational%20relaxation%20in%20sonic%20nozzle%20expansions&rft.jtitle=J.%20Chem.%20Phys.;%20(United%20States)&rft.au=Klots,%20Cornelius%20E.&rft.aucorp=Chemical%20Physics%20Section,%20Health%20and%20Safety%20Research%20Division,%20Oak%20Ridge%20National%20Laboratory,%20Oak%20Ridge,%20Tennessee%2037830&rft.date=1980-01-01&rft.volume=72&rft.issue=1&rft.spage=192&rft.epage=197&rft.pages=192-197&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.438902&rft_dat=%3Ccrossref_osti_%3E10_1063_1_438902%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |