The wave equation of a nonlinear triatomic molecule and the adiabatic correction to the Born–Oppenheimer approximation
The wave equation for a nonlinear polyatomic molecule is formulated in molecule-fixed coordinates by a method originally due to Hirschfelder and Wigner. Application is made to a triatomic molecule, and the wave equation is explicitly presented in a useful molecule-fixed coordinate system. The formul...
Gespeichert in:
Veröffentlicht in: | J. Chem. Phys.; (United States) 1977-07, Vol.67 (2), p.593-603 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 2 |
container_start_page | 593 |
container_title | J. Chem. Phys.; (United States) |
container_volume | 67 |
creator | Bardo, Richard D. Wolfsberg, Max |
description | The wave equation for a nonlinear polyatomic molecule is formulated in molecule-fixed coordinates by a method originally due to Hirschfelder and Wigner. Application is made to a triatomic molecule, and the wave equation is explicitly presented in a useful molecule-fixed coordinate system. The formula for the adiabatic correction to the Born–Oppenheimer approximation for a triatomic molecule is obtained. The extension of the present formulation to larger polyatomic molecules is pointed out. Some terms in the triatomic molecule wave equation are discussed in detail. |
doi_str_mv | 10.1063/1.434860 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_434860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_434860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-79255168712e298673ff95fa3d2e6b6e72deda326e2cff3eb40720217c5fa80b3</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqUgcQSLFZuUsZ3YyRIq_qRK3ZR15Dhj1Si1g-NC2XEHbshJCC2rWcz7Zt57hFwymDGQ4obNcpGXEo7IhEFZZUpWcEwmAJxllQR5Ss6G4RUAmOL5hOxWa6Qf-h0pvm11csHTYKmmPvjOedSRpuh0Chtn6CZ0aLYdUu1bmkZOt043I2SoCTGi2eMp7Hd3Ifqfr-9l36Nfo9tgpLrvY9i5zf7NOTmxuhvw4n9OycvD_Wr-lC2Wj8_z20VmeMFTpipeFEyWinHkVSmVsLYqrBYtR9lIVLzFVgsukRtrBTY5KD5mVWYUldCIKbk63A1DcvVgXEKzNsH70W6tBGcwtjYl1weRiWEYItq6j6PP-FkzqP9qrVl9qFX8AvjlbFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The wave equation of a nonlinear triatomic molecule and the adiabatic correction to the Born–Oppenheimer approximation</title><source>AIP Digital Archive</source><creator>Bardo, Richard D. ; Wolfsberg, Max</creator><creatorcontrib>Bardo, Richard D. ; Wolfsberg, Max ; Department of Chemistry, University of California, Irvine, California 92717</creatorcontrib><description>The wave equation for a nonlinear polyatomic molecule is formulated in molecule-fixed coordinates by a method originally due to Hirschfelder and Wigner. Application is made to a triatomic molecule, and the wave equation is explicitly presented in a useful molecule-fixed coordinate system. The formula for the adiabatic correction to the Born–Oppenheimer approximation for a triatomic molecule is obtained. The extension of the present formulation to larger polyatomic molecules is pointed out. Some terms in the triatomic molecule wave equation are discussed in detail.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.434860</identifier><language>eng</language><publisher>United States</publisher><subject>640305 - Atomic, Molecular & Chemical Physics- Atomic & Molecular Theory- (-1987) ; ADIABATIC PROCESSES ; ATOMIC AND MOLECULAR PHYSICS ; BORN-OPPENHEIMER APPROXIMATION ; CORRECTIONS ; DIFFERENTIAL EQUATIONS ; ELECTRONIC STRUCTURE ; EQUATIONS ; FUNCTIONS ; MOLECULES ; POLYATOMIC MOLECULES ; SCHROEDINGER EQUATION ; WAVE EQUATIONS ; WAVE FUNCTIONS</subject><ispartof>J. Chem. Phys.; (United States), 1977-07, Vol.67 (2), p.593-603</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-79255168712e298673ff95fa3d2e6b6e72deda326e2cff3eb40720217c5fa80b3</citedby><cites>FETCH-LOGICAL-c252t-79255168712e298673ff95fa3d2e6b6e72deda326e2cff3eb40720217c5fa80b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/7321006$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bardo, Richard D.</creatorcontrib><creatorcontrib>Wolfsberg, Max</creatorcontrib><creatorcontrib>Department of Chemistry, University of California, Irvine, California 92717</creatorcontrib><title>The wave equation of a nonlinear triatomic molecule and the adiabatic correction to the Born–Oppenheimer approximation</title><title>J. Chem. Phys.; (United States)</title><description>The wave equation for a nonlinear polyatomic molecule is formulated in molecule-fixed coordinates by a method originally due to Hirschfelder and Wigner. Application is made to a triatomic molecule, and the wave equation is explicitly presented in a useful molecule-fixed coordinate system. The formula for the adiabatic correction to the Born–Oppenheimer approximation for a triatomic molecule is obtained. The extension of the present formulation to larger polyatomic molecules is pointed out. Some terms in the triatomic molecule wave equation are discussed in detail.</description><subject>640305 - Atomic, Molecular & Chemical Physics- Atomic & Molecular Theory- (-1987)</subject><subject>ADIABATIC PROCESSES</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>BORN-OPPENHEIMER APPROXIMATION</subject><subject>CORRECTIONS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELECTRONIC STRUCTURE</subject><subject>EQUATIONS</subject><subject>FUNCTIONS</subject><subject>MOLECULES</subject><subject>POLYATOMIC MOLECULES</subject><subject>SCHROEDINGER EQUATION</subject><subject>WAVE EQUATIONS</subject><subject>WAVE FUNCTIONS</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqUgcQSLFZuUsZ3YyRIq_qRK3ZR15Dhj1Si1g-NC2XEHbshJCC2rWcz7Zt57hFwymDGQ4obNcpGXEo7IhEFZZUpWcEwmAJxllQR5Ss6G4RUAmOL5hOxWa6Qf-h0pvm11csHTYKmmPvjOedSRpuh0Chtn6CZ0aLYdUu1bmkZOt043I2SoCTGi2eMp7Hd3Ifqfr-9l36Nfo9tgpLrvY9i5zf7NOTmxuhvw4n9OycvD_Wr-lC2Wj8_z20VmeMFTpipeFEyWinHkVSmVsLYqrBYtR9lIVLzFVgsukRtrBTY5KD5mVWYUldCIKbk63A1DcvVgXEKzNsH70W6tBGcwtjYl1weRiWEYItq6j6PP-FkzqP9qrVl9qFX8AvjlbFA</recordid><startdate>19770715</startdate><enddate>19770715</enddate><creator>Bardo, Richard D.</creator><creator>Wolfsberg, Max</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19770715</creationdate><title>The wave equation of a nonlinear triatomic molecule and the adiabatic correction to the Born–Oppenheimer approximation</title><author>Bardo, Richard D. ; Wolfsberg, Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-79255168712e298673ff95fa3d2e6b6e72deda326e2cff3eb40720217c5fa80b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>640305 - Atomic, Molecular & Chemical Physics- Atomic & Molecular Theory- (-1987)</topic><topic>ADIABATIC PROCESSES</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>BORN-OPPENHEIMER APPROXIMATION</topic><topic>CORRECTIONS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELECTRONIC STRUCTURE</topic><topic>EQUATIONS</topic><topic>FUNCTIONS</topic><topic>MOLECULES</topic><topic>POLYATOMIC MOLECULES</topic><topic>SCHROEDINGER EQUATION</topic><topic>WAVE EQUATIONS</topic><topic>WAVE FUNCTIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardo, Richard D.</creatorcontrib><creatorcontrib>Wolfsberg, Max</creatorcontrib><creatorcontrib>Department of Chemistry, University of California, Irvine, California 92717</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Chem. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardo, Richard D.</au><au>Wolfsberg, Max</au><aucorp>Department of Chemistry, University of California, Irvine, California 92717</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The wave equation of a nonlinear triatomic molecule and the adiabatic correction to the Born–Oppenheimer approximation</atitle><jtitle>J. Chem. Phys.; (United States)</jtitle><date>1977-07-15</date><risdate>1977</risdate><volume>67</volume><issue>2</issue><spage>593</spage><epage>603</epage><pages>593-603</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The wave equation for a nonlinear polyatomic molecule is formulated in molecule-fixed coordinates by a method originally due to Hirschfelder and Wigner. Application is made to a triatomic molecule, and the wave equation is explicitly presented in a useful molecule-fixed coordinate system. The formula for the adiabatic correction to the Born–Oppenheimer approximation for a triatomic molecule is obtained. The extension of the present formulation to larger polyatomic molecules is pointed out. Some terms in the triatomic molecule wave equation are discussed in detail.</abstract><cop>United States</cop><doi>10.1063/1.434860</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | J. Chem. Phys.; (United States), 1977-07, Vol.67 (2), p.593-603 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_434860 |
source | AIP Digital Archive |
subjects | 640305 - Atomic, Molecular & Chemical Physics- Atomic & Molecular Theory- (-1987) ADIABATIC PROCESSES ATOMIC AND MOLECULAR PHYSICS BORN-OPPENHEIMER APPROXIMATION CORRECTIONS DIFFERENTIAL EQUATIONS ELECTRONIC STRUCTURE EQUATIONS FUNCTIONS MOLECULES POLYATOMIC MOLECULES SCHROEDINGER EQUATION WAVE EQUATIONS WAVE FUNCTIONS |
title | The wave equation of a nonlinear triatomic molecule and the adiabatic correction to the Born–Oppenheimer approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20wave%20equation%20of%20a%20nonlinear%20triatomic%20molecule%20and%20the%20adiabatic%20correction%20to%20the%20Born%E2%80%93Oppenheimer%20approximation&rft.jtitle=J.%20Chem.%20Phys.;%20(United%20States)&rft.au=Bardo,%20Richard%20D.&rft.aucorp=Department%20of%20Chemistry,%20University%20of%20California,%20Irvine,%20California%2092717&rft.date=1977-07-15&rft.volume=67&rft.issue=2&rft.spage=593&rft.epage=603&rft.pages=593-603&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.434860&rft_dat=%3Ccrossref_osti_%3E10_1063_1_434860%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |