The influence of molecular rotation on vibration–translation energy transfer

The role of molecular rotations in the exchange of vibrational and translational energy is investigated for collisions between anharmonic diatomic molecules and structureless atoms. A three-dimensional, semiclassical, impact parameter description is applied with emphasis directed towards the influen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Chem. Phys.; (United States) 1977-02, Vol.66 (4), p.1457-1474
1. Verfasser: McKenzie, Robert L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1474
container_issue 4
container_start_page 1457
container_title J. Chem. Phys.; (United States)
container_volume 66
creator McKenzie, Robert L.
description The role of molecular rotations in the exchange of vibrational and translational energy is investigated for collisions between anharmonic diatomic molecules and structureless atoms. A three-dimensional, semiclassical, impact parameter description is applied with emphasis directed towards the influence of rotational coupling on the net rate of vibrational energy transfer summed over all final rotational states. These results are then related to the predictions of an equivalent collinear collision model, and their comparison allows an evaluation of the collinear approximation. The mechanisms of vibrational energy transfer including rotational transitions are shown to be separable into three classes, with the molecules belonging to each class identified first and foremost by their ratio of fundamental vibrational and rotational frequencies, ωe/Be, and second by the proximity of their initial state to a near-resonant vibration–rotation transition with a small change in angular momentum. While the dynamics of molecules with ωe/Be ratios that are comparable to the range of angular momentum transitions having strong coupling are found to require a complete three-dimensional description, the rates of vibrational energy transfer in molecules with large ωe/Be ratios appear to be well approximated by a collinear collision model.
doi_str_mv 10.1063/1.434108
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_434108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_434108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-c792368392eaa867807988ad8dbc197b6a785d596b816600b02d486e7bc02f293</originalsourceid><addsrcrecordid>eNotkM1KxDAUhYMoOI6Cj1Bcuel4k7T5WcrgHwy6GdchTW-dSieRJCPMznfwDX0S61S43Mu55-MsDiGXFBYUBL-hi4pXFNQRmY1bl1JoOCYzAEZLLUCckrOU3gGASlbNyPN6g0Xvu2GH3mERumIbBnS7wcYihmxzH3wxzmffxIP4-frO0fo0TBZ6jG_74vDqMJ6Tk84OCS_-75y83t-tl4_l6uXhaXm7Kh2rq1w6qRkXimuG1iohFUitlG1V2ziqZSOsVHVba9EoKgRAA6ytlEDZOGAd03xOrqbckHJvkuszuo0L3qPLRjImgNMRup4gF0NKETvzEfutjXtDwfyVZaiZyuK_KeJccg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The influence of molecular rotation on vibration–translation energy transfer</title><source>AIP Digital Archive</source><creator>McKenzie, Robert L.</creator><creatorcontrib>McKenzie, Robert L. ; Ames Research Center, NASA, Moffett Field, California 94035</creatorcontrib><description>The role of molecular rotations in the exchange of vibrational and translational energy is investigated for collisions between anharmonic diatomic molecules and structureless atoms. A three-dimensional, semiclassical, impact parameter description is applied with emphasis directed towards the influence of rotational coupling on the net rate of vibrational energy transfer summed over all final rotational states. These results are then related to the predictions of an equivalent collinear collision model, and their comparison allows an evaluation of the collinear approximation. The mechanisms of vibrational energy transfer including rotational transitions are shown to be separable into three classes, with the molecules belonging to each class identified first and foremost by their ratio of fundamental vibrational and rotational frequencies, ωe/Be, and second by the proximity of their initial state to a near-resonant vibration–rotation transition with a small change in angular momentum. While the dynamics of molecules with ωe/Be ratios that are comparable to the range of angular momentum transitions having strong coupling are found to require a complete three-dimensional description, the rates of vibrational energy transfer in molecules with large ωe/Be ratios appear to be well approximated by a collinear collision model.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.434108</identifier><language>eng</language><publisher>United States</publisher><subject>640304 - Atomic, Molecular &amp; Chemical Physics- Collision Phenomena ; ATOM COLLISIONS ; ATOM-MOLECULE COLLISIONS ; ATOMIC AND MOLECULAR PHYSICS ; COLLISIONS ; ENERGY LEVELS ; ENERGY TRANSFER ; ENERGY-LEVEL TRANSITIONS ; EXCITATION ; EXCITED STATES ; MOLECULE COLLISIONS ; ROTATIONAL STATES ; VIBRATIONAL STATES</subject><ispartof>J. Chem. Phys.; (United States), 1977-02, Vol.66 (4), p.1457-1474</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-c792368392eaa867807988ad8dbc197b6a785d596b816600b02d486e7bc02f293</citedby><cites>FETCH-LOGICAL-c254t-c792368392eaa867807988ad8dbc197b6a785d596b816600b02d486e7bc02f293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,886,27925,27926</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/7226031$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McKenzie, Robert L.</creatorcontrib><creatorcontrib>Ames Research Center, NASA, Moffett Field, California 94035</creatorcontrib><title>The influence of molecular rotation on vibration–translation energy transfer</title><title>J. Chem. Phys.; (United States)</title><description>The role of molecular rotations in the exchange of vibrational and translational energy is investigated for collisions between anharmonic diatomic molecules and structureless atoms. A three-dimensional, semiclassical, impact parameter description is applied with emphasis directed towards the influence of rotational coupling on the net rate of vibrational energy transfer summed over all final rotational states. These results are then related to the predictions of an equivalent collinear collision model, and their comparison allows an evaluation of the collinear approximation. The mechanisms of vibrational energy transfer including rotational transitions are shown to be separable into three classes, with the molecules belonging to each class identified first and foremost by their ratio of fundamental vibrational and rotational frequencies, ωe/Be, and second by the proximity of their initial state to a near-resonant vibration–rotation transition with a small change in angular momentum. While the dynamics of molecules with ωe/Be ratios that are comparable to the range of angular momentum transitions having strong coupling are found to require a complete three-dimensional description, the rates of vibrational energy transfer in molecules with large ωe/Be ratios appear to be well approximated by a collinear collision model.</description><subject>640304 - Atomic, Molecular &amp; Chemical Physics- Collision Phenomena</subject><subject>ATOM COLLISIONS</subject><subject>ATOM-MOLECULE COLLISIONS</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>COLLISIONS</subject><subject>ENERGY LEVELS</subject><subject>ENERGY TRANSFER</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>EXCITATION</subject><subject>EXCITED STATES</subject><subject>MOLECULE COLLISIONS</subject><subject>ROTATIONAL STATES</subject><subject>VIBRATIONAL STATES</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAUhYMoOI6Cj1Bcuel4k7T5WcrgHwy6GdchTW-dSieRJCPMznfwDX0S61S43Mu55-MsDiGXFBYUBL-hi4pXFNQRmY1bl1JoOCYzAEZLLUCckrOU3gGASlbNyPN6g0Xvu2GH3mERumIbBnS7wcYihmxzH3wxzmffxIP4-frO0fo0TBZ6jG_74vDqMJ6Tk84OCS_-75y83t-tl4_l6uXhaXm7Kh2rq1w6qRkXimuG1iohFUitlG1V2ziqZSOsVHVba9EoKgRAA6ytlEDZOGAd03xOrqbckHJvkuszuo0L3qPLRjImgNMRup4gF0NKETvzEfutjXtDwfyVZaiZyuK_KeJccg</recordid><startdate>19770215</startdate><enddate>19770215</enddate><creator>McKenzie, Robert L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19770215</creationdate><title>The influence of molecular rotation on vibration–translation energy transfer</title><author>McKenzie, Robert L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-c792368392eaa867807988ad8dbc197b6a785d596b816600b02d486e7bc02f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>640304 - Atomic, Molecular &amp; Chemical Physics- Collision Phenomena</topic><topic>ATOM COLLISIONS</topic><topic>ATOM-MOLECULE COLLISIONS</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>COLLISIONS</topic><topic>ENERGY LEVELS</topic><topic>ENERGY TRANSFER</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>EXCITATION</topic><topic>EXCITED STATES</topic><topic>MOLECULE COLLISIONS</topic><topic>ROTATIONAL STATES</topic><topic>VIBRATIONAL STATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKenzie, Robert L.</creatorcontrib><creatorcontrib>Ames Research Center, NASA, Moffett Field, California 94035</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Chem. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKenzie, Robert L.</au><aucorp>Ames Research Center, NASA, Moffett Field, California 94035</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of molecular rotation on vibration–translation energy transfer</atitle><jtitle>J. Chem. Phys.; (United States)</jtitle><date>1977-02-15</date><risdate>1977</risdate><volume>66</volume><issue>4</issue><spage>1457</spage><epage>1474</epage><pages>1457-1474</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The role of molecular rotations in the exchange of vibrational and translational energy is investigated for collisions between anharmonic diatomic molecules and structureless atoms. A three-dimensional, semiclassical, impact parameter description is applied with emphasis directed towards the influence of rotational coupling on the net rate of vibrational energy transfer summed over all final rotational states. These results are then related to the predictions of an equivalent collinear collision model, and their comparison allows an evaluation of the collinear approximation. The mechanisms of vibrational energy transfer including rotational transitions are shown to be separable into three classes, with the molecules belonging to each class identified first and foremost by their ratio of fundamental vibrational and rotational frequencies, ωe/Be, and second by the proximity of their initial state to a near-resonant vibration–rotation transition with a small change in angular momentum. While the dynamics of molecules with ωe/Be ratios that are comparable to the range of angular momentum transitions having strong coupling are found to require a complete three-dimensional description, the rates of vibrational energy transfer in molecules with large ωe/Be ratios appear to be well approximated by a collinear collision model.</abstract><cop>United States</cop><doi>10.1063/1.434108</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof J. Chem. Phys.; (United States), 1977-02, Vol.66 (4), p.1457-1474
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_434108
source AIP Digital Archive
subjects 640304 - Atomic, Molecular & Chemical Physics- Collision Phenomena
ATOM COLLISIONS
ATOM-MOLECULE COLLISIONS
ATOMIC AND MOLECULAR PHYSICS
COLLISIONS
ENERGY LEVELS
ENERGY TRANSFER
ENERGY-LEVEL TRANSITIONS
EXCITATION
EXCITED STATES
MOLECULE COLLISIONS
ROTATIONAL STATES
VIBRATIONAL STATES
title The influence of molecular rotation on vibration–translation energy transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20molecular%20rotation%20on%20vibration%E2%80%93translation%20energy%20transfer&rft.jtitle=J.%20Chem.%20Phys.;%20(United%20States)&rft.au=McKenzie,%20Robert%20L.&rft.aucorp=Ames%20Research%20Center,%20NASA,%20Moffett%20Field,%20California%2094035&rft.date=1977-02-15&rft.volume=66&rft.issue=4&rft.spage=1457&rft.epage=1474&rft.pages=1457-1474&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.434108&rft_dat=%3Ccrossref_osti_%3E10_1063_1_434108%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true