Solidification of Ga–Mg–Zn in a gas-filled drop tube: Experiments and modeling

Droplets of Ga24Mg36Zn40 were solidified in a 3 m, helium-filled drop tube. The solidified droplets contained uniformly distributed MgZn2 dendritic primary crystals, whose number was determined as a function of droplet size. A new model for the solidification in a gas-filled drop tube was developed....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2000-02, Vol.87 (4), p.1801-1818
Hauptverfasser: Fransaer, Jan, Wagner, Andrew V., Spaepen, Frans
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1818
container_issue 4
container_start_page 1801
container_title Journal of applied physics
container_volume 87
creator Fransaer, Jan
Wagner, Andrew V.
Spaepen, Frans
description Droplets of Ga24Mg36Zn40 were solidified in a 3 m, helium-filled drop tube. The solidified droplets contained uniformly distributed MgZn2 dendritic primary crystals, whose number was determined as a function of droplet size. A new model for the solidification in a gas-filled drop tube was developed. It allows introduction, stochastically in space and time, of multiple nuclei with interfering thermal fields. Using classical homogeneous nucleation kinetics, the model reproduces the size dependence of the number of primary crystals. The crystal-melt interfacial tension is estimated at 0.0008–0.002 J/m2. This low value is attributed to the polytetrahedral structural similarity between the melt and the MgZn2 Frank-Kasper phase. The program is available upon request.
doi_str_mv 10.1063/1.372095
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_372095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_372095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-bd144c2aa73a8de09f50065992d7e654b53a684b51ae5fe09467a281f105be3a3</originalsourceid><addsrcrecordid>eNotkM1KxDAUhYMoWEfBR8jSTcd7k6Zp3MkwjsKI4M_GTbltkhLptKWpoDvfwTf0SayMm_MtDhwOH2PnCEuEXF7iUmoBRh2wBKEwqVYKDlkCIDAtjDbH7CTGNwDEQpqEPT71bbDBh5qm0He893xDP1_f980crx0PHSfeUEx9aFtnuR37gU_vlbvi64_BjWHnuily6izf9da1oWtO2ZGnNrqzfy7Yy836eXWbbh82d6vrbVoLg1NaWcyyWhBpSYV1YLwCyJUxwmqXq6xSkvJiBpJTfu6zXJMo0COoykmSC3ax363HPsbR-XKY79D4WSKUfy5KLPcu5C_EmVH3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solidification of Ga–Mg–Zn in a gas-filled drop tube: Experiments and modeling</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Fransaer, Jan ; Wagner, Andrew V. ; Spaepen, Frans</creator><creatorcontrib>Fransaer, Jan ; Wagner, Andrew V. ; Spaepen, Frans</creatorcontrib><description>Droplets of Ga24Mg36Zn40 were solidified in a 3 m, helium-filled drop tube. The solidified droplets contained uniformly distributed MgZn2 dendritic primary crystals, whose number was determined as a function of droplet size. A new model for the solidification in a gas-filled drop tube was developed. It allows introduction, stochastically in space and time, of multiple nuclei with interfering thermal fields. Using classical homogeneous nucleation kinetics, the model reproduces the size dependence of the number of primary crystals. The crystal-melt interfacial tension is estimated at 0.0008–0.002 J/m2. This low value is attributed to the polytetrahedral structural similarity between the melt and the MgZn2 Frank-Kasper phase. The program is available upon request.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.372095</identifier><language>eng</language><ispartof>Journal of applied physics, 2000-02, Vol.87 (4), p.1801-1818</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-bd144c2aa73a8de09f50065992d7e654b53a684b51ae5fe09467a281f105be3a3</citedby><cites>FETCH-LOGICAL-c291t-bd144c2aa73a8de09f50065992d7e654b53a684b51ae5fe09467a281f105be3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fransaer, Jan</creatorcontrib><creatorcontrib>Wagner, Andrew V.</creatorcontrib><creatorcontrib>Spaepen, Frans</creatorcontrib><title>Solidification of Ga–Mg–Zn in a gas-filled drop tube: Experiments and modeling</title><title>Journal of applied physics</title><description>Droplets of Ga24Mg36Zn40 were solidified in a 3 m, helium-filled drop tube. The solidified droplets contained uniformly distributed MgZn2 dendritic primary crystals, whose number was determined as a function of droplet size. A new model for the solidification in a gas-filled drop tube was developed. It allows introduction, stochastically in space and time, of multiple nuclei with interfering thermal fields. Using classical homogeneous nucleation kinetics, the model reproduces the size dependence of the number of primary crystals. The crystal-melt interfacial tension is estimated at 0.0008–0.002 J/m2. This low value is attributed to the polytetrahedral structural similarity between the melt and the MgZn2 Frank-Kasper phase. The program is available upon request.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAUhYMoWEfBR8jSTcd7k6Zp3MkwjsKI4M_GTbltkhLptKWpoDvfwTf0SayMm_MtDhwOH2PnCEuEXF7iUmoBRh2wBKEwqVYKDlkCIDAtjDbH7CTGNwDEQpqEPT71bbDBh5qm0He893xDP1_f980crx0PHSfeUEx9aFtnuR37gU_vlbvi64_BjWHnuily6izf9da1oWtO2ZGnNrqzfy7Yy836eXWbbh82d6vrbVoLg1NaWcyyWhBpSYV1YLwCyJUxwmqXq6xSkvJiBpJTfu6zXJMo0COoykmSC3ax363HPsbR-XKY79D4WSKUfy5KLPcu5C_EmVH3</recordid><startdate>20000215</startdate><enddate>20000215</enddate><creator>Fransaer, Jan</creator><creator>Wagner, Andrew V.</creator><creator>Spaepen, Frans</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000215</creationdate><title>Solidification of Ga–Mg–Zn in a gas-filled drop tube: Experiments and modeling</title><author>Fransaer, Jan ; Wagner, Andrew V. ; Spaepen, Frans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-bd144c2aa73a8de09f50065992d7e654b53a684b51ae5fe09467a281f105be3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fransaer, Jan</creatorcontrib><creatorcontrib>Wagner, Andrew V.</creatorcontrib><creatorcontrib>Spaepen, Frans</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fransaer, Jan</au><au>Wagner, Andrew V.</au><au>Spaepen, Frans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solidification of Ga–Mg–Zn in a gas-filled drop tube: Experiments and modeling</atitle><jtitle>Journal of applied physics</jtitle><date>2000-02-15</date><risdate>2000</risdate><volume>87</volume><issue>4</issue><spage>1801</spage><epage>1818</epage><pages>1801-1818</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Droplets of Ga24Mg36Zn40 were solidified in a 3 m, helium-filled drop tube. The solidified droplets contained uniformly distributed MgZn2 dendritic primary crystals, whose number was determined as a function of droplet size. A new model for the solidification in a gas-filled drop tube was developed. It allows introduction, stochastically in space and time, of multiple nuclei with interfering thermal fields. Using classical homogeneous nucleation kinetics, the model reproduces the size dependence of the number of primary crystals. The crystal-melt interfacial tension is estimated at 0.0008–0.002 J/m2. This low value is attributed to the polytetrahedral structural similarity between the melt and the MgZn2 Frank-Kasper phase. The program is available upon request.</abstract><doi>10.1063/1.372095</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2000-02, Vol.87 (4), p.1801-1818
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_372095
source AIP Journals Complete; AIP Digital Archive
title Solidification of Ga–Mg–Zn in a gas-filled drop tube: Experiments and modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solidification%20of%20Ga%E2%80%93Mg%E2%80%93Zn%20in%20a%20gas-filled%20drop%20tube:%20Experiments%20and%20modeling&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Fransaer,%20Jan&rft.date=2000-02-15&rft.volume=87&rft.issue=4&rft.spage=1801&rft.epage=1818&rft.pages=1801-1818&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.372095&rft_dat=%3Ccrossref%3E10_1063_1_372095%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true