Time-resolved photoluminescence measurements of quantum dots in InGaN multiple quantum wells and light-emitting diodes

We have used time-resolved photoluminescence to examine InGaN/GaN multiple quantum wells (MQWs) and light-emitting diodes (LEDs) before the final stages of processing at room temperature. The photoluminescence kinetics are well described by a stretched exponential exp[−(t/τ)β], indicating significan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1999-07, Vol.86 (2), p.1114-1118
Hauptverfasser: Pophristic, M., Long, F. H., Tran, C., Ferguson, I. T., Karlicek, R. F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have used time-resolved photoluminescence to examine InGaN/GaN multiple quantum wells (MQWs) and light-emitting diodes (LEDs) before the final stages of processing at room temperature. The photoluminescence kinetics are well described by a stretched exponential exp[−(t/τ)β], indicating significant disorder in the material. We attribute the disorder to nanoscale quantum dots of high local indium concentration. For the three MQWs examined, the stretching parameter β and the stretched exponential lifetime τ were found to vary with emission energy. The stretching parameter β for the emission peak of the three MQWs was observed to increase from 0.75 to 0.85 with apparently increasing indium phase segregation. A higher degree of indium phase segregation is consistent with more isolated quantum dots inside the two-dimensional quantum well. The time-resolved photoluminescence from a LED wafer, before the final stages of processing, suggests the importance of quantum dots of high indium concentration on the LED operation.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.370865