Thermocapillary motion of a slender viscous droplet in a channel

We extend the previously developed low-capillary-number asymptotic theory of thermocapillary motion of a long bubble and a moderately viscous droplet in a channel [ S. K. Wilson , " The effect of an axial temperature gradient on the steady motion of a large droplet in a tube ," J. Eng. Mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2012-02, Vol.24 (2), p.022102-022102-11
Hauptverfasser: Katz, E., Haj, M., Leshansky, A. M., Nepomnyashchy, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 022102-11
container_issue 2
container_start_page 022102
container_title Physics of fluids (1994)
container_volume 24
creator Katz, E.
Haj, M.
Leshansky, A. M.
Nepomnyashchy, A.
description We extend the previously developed low-capillary-number asymptotic theory of thermocapillary motion of a long bubble and a moderately viscous droplet in a channel [ S. K. Wilson , " The effect of an axial temperature gradient on the steady motion of a large droplet in a tube ," J. Eng. Math. 29 , 205 ( 1995 ) 10.1007/BF00042854 ; A. Mazouchi and G. M. Homsy , " Thermocapillary migration of long bubbles in cylindrical capillary tubes ," Phys. Fluids 12 , 542 ( 2000 ) 10.1063/1.870260 ] toward droplets with an arbitrary viscosity. A generalized modified Landau-Levich-Bretherton equation, governing the thickness of the carrier liquid film entrained between the droplet and the channel wall in the transition region between constant thickness film and constant curvature cap, is solved numerically. The resulting droplet velocity is determined applying the mass balance and it is a function of two dimensionless parameters, the modified capillary number, Δσ*, equal to the surface tension variance over a distance of channel half-width scaled with the mean surface tension, and the inner-to-outer liquid viscosity ratio, λ. It is found that the droplet speed decreases with the increase in droplet viscosity, as expected, while this retardation becomes more operative upon the increase in Δσ*.
doi_str_mv 10.1063/1.3681813
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3681813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_3681813Thermocapillary_moti</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-bb796c43a6c30e8c933dae93d3a54ae16371c577e3c4b188350f45329f8af6d43</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK4e_Aa5ePDQNdlpp-lFlGX9Awte1nOZTRM2km1KUgW_vS1dPAieZmB-7zHvMXYtxUIKhDu5AFRSSThhMylUlZWIeDrupcgQQZ6zi5Q-hBBQLXHGHrZ7Ew9BU-e8p_jND6F3oeXBcuLJm7YxkX-5pMNn4k0MnTc9d-1w1HtqW-Mv2Zkln8zVcc7Z-9N6u3rJNm_Pr6vHTaZB5n2225UV6hwINQijdAXQkKmgASpyMhKhlLooSwM630mloBA2L2BZWUUWmxzm7Hby1TGkFI2tu-gOw8e1FPUYvZb1MfrA3kxsR0mTt5Fa7dKvYFkgKhBq4O4nLmnX05j7f9M_PdVjT_ADxL1tbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermocapillary motion of a slender viscous droplet in a channel</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Katz, E. ; Haj, M. ; Leshansky, A. M. ; Nepomnyashchy, A.</creator><creatorcontrib>Katz, E. ; Haj, M. ; Leshansky, A. M. ; Nepomnyashchy, A.</creatorcontrib><description>We extend the previously developed low-capillary-number asymptotic theory of thermocapillary motion of a long bubble and a moderately viscous droplet in a channel [ S. K. Wilson , " The effect of an axial temperature gradient on the steady motion of a large droplet in a tube ," J. Eng. Math. 29 , 205 ( 1995 ) 10.1007/BF00042854 ; A. Mazouchi and G. M. Homsy , " Thermocapillary migration of long bubbles in cylindrical capillary tubes ," Phys. Fluids 12 , 542 ( 2000 ) 10.1063/1.870260 ] toward droplets with an arbitrary viscosity. A generalized modified Landau-Levich-Bretherton equation, governing the thickness of the carrier liquid film entrained between the droplet and the channel wall in the transition region between constant thickness film and constant curvature cap, is solved numerically. The resulting droplet velocity is determined applying the mass balance and it is a function of two dimensionless parameters, the modified capillary number, Δσ*, equal to the surface tension variance over a distance of channel half-width scaled with the mean surface tension, and the inner-to-outer liquid viscosity ratio, λ. It is found that the droplet speed decreases with the increase in droplet viscosity, as expected, while this retardation becomes more operative upon the increase in Δσ*.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3681813</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Drops and bubbles ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Nonhomogeneous flows ; Physics ; Surface-tension-driven instability</subject><ispartof>Physics of fluids (1994), 2012-02, Vol.24 (2), p.022102-022102-11</ispartof><rights>2012 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-bb796c43a6c30e8c933dae93d3a54ae16371c577e3c4b188350f45329f8af6d43</citedby><cites>FETCH-LOGICAL-c314t-bb796c43a6c30e8c933dae93d3a54ae16371c577e3c4b188350f45329f8af6d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25668308$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Katz, E.</creatorcontrib><creatorcontrib>Haj, M.</creatorcontrib><creatorcontrib>Leshansky, A. M.</creatorcontrib><creatorcontrib>Nepomnyashchy, A.</creatorcontrib><title>Thermocapillary motion of a slender viscous droplet in a channel</title><title>Physics of fluids (1994)</title><description>We extend the previously developed low-capillary-number asymptotic theory of thermocapillary motion of a long bubble and a moderately viscous droplet in a channel [ S. K. Wilson , " The effect of an axial temperature gradient on the steady motion of a large droplet in a tube ," J. Eng. Math. 29 , 205 ( 1995 ) 10.1007/BF00042854 ; A. Mazouchi and G. M. Homsy , " Thermocapillary migration of long bubbles in cylindrical capillary tubes ," Phys. Fluids 12 , 542 ( 2000 ) 10.1063/1.870260 ] toward droplets with an arbitrary viscosity. A generalized modified Landau-Levich-Bretherton equation, governing the thickness of the carrier liquid film entrained between the droplet and the channel wall in the transition region between constant thickness film and constant curvature cap, is solved numerically. The resulting droplet velocity is determined applying the mass balance and it is a function of two dimensionless parameters, the modified capillary number, Δσ*, equal to the surface tension variance over a distance of channel half-width scaled with the mean surface tension, and the inner-to-outer liquid viscosity ratio, λ. It is found that the droplet speed decreases with the increase in droplet viscosity, as expected, while this retardation becomes more operative upon the increase in Δσ*.</description><subject>Drops and bubbles</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Surface-tension-driven instability</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK4e_Aa5ePDQNdlpp-lFlGX9Awte1nOZTRM2km1KUgW_vS1dPAieZmB-7zHvMXYtxUIKhDu5AFRSSThhMylUlZWIeDrupcgQQZ6zi5Q-hBBQLXHGHrZ7Ew9BU-e8p_jND6F3oeXBcuLJm7YxkX-5pMNn4k0MnTc9d-1w1HtqW-Mv2Zkln8zVcc7Z-9N6u3rJNm_Pr6vHTaZB5n2225UV6hwINQijdAXQkKmgASpyMhKhlLooSwM630mloBA2L2BZWUUWmxzm7Hby1TGkFI2tu-gOw8e1FPUYvZb1MfrA3kxsR0mTt5Fa7dKvYFkgKhBq4O4nLmnX05j7f9M_PdVjT_ADxL1tbQ</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Katz, E.</creator><creator>Haj, M.</creator><creator>Leshansky, A. M.</creator><creator>Nepomnyashchy, A.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120201</creationdate><title>Thermocapillary motion of a slender viscous droplet in a channel</title><author>Katz, E. ; Haj, M. ; Leshansky, A. M. ; Nepomnyashchy, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-bb796c43a6c30e8c933dae93d3a54ae16371c577e3c4b188350f45329f8af6d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Drops and bubbles</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Surface-tension-driven instability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, E.</creatorcontrib><creatorcontrib>Haj, M.</creatorcontrib><creatorcontrib>Leshansky, A. M.</creatorcontrib><creatorcontrib>Nepomnyashchy, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, E.</au><au>Haj, M.</au><au>Leshansky, A. M.</au><au>Nepomnyashchy, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermocapillary motion of a slender viscous droplet in a channel</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>24</volume><issue>2</issue><spage>022102</spage><epage>022102-11</epage><pages>022102-022102-11</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We extend the previously developed low-capillary-number asymptotic theory of thermocapillary motion of a long bubble and a moderately viscous droplet in a channel [ S. K. Wilson , " The effect of an axial temperature gradient on the steady motion of a large droplet in a tube ," J. Eng. Math. 29 , 205 ( 1995 ) 10.1007/BF00042854 ; A. Mazouchi and G. M. Homsy , " Thermocapillary migration of long bubbles in cylindrical capillary tubes ," Phys. Fluids 12 , 542 ( 2000 ) 10.1063/1.870260 ] toward droplets with an arbitrary viscosity. A generalized modified Landau-Levich-Bretherton equation, governing the thickness of the carrier liquid film entrained between the droplet and the channel wall in the transition region between constant thickness film and constant curvature cap, is solved numerically. The resulting droplet velocity is determined applying the mass balance and it is a function of two dimensionless parameters, the modified capillary number, Δσ*, equal to the surface tension variance over a distance of channel half-width scaled with the mean surface tension, and the inner-to-outer liquid viscosity ratio, λ. It is found that the droplet speed decreases with the increase in droplet viscosity, as expected, while this retardation becomes more operative upon the increase in Δσ*.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3681813</doi></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2012-02, Vol.24 (2), p.022102-022102-11
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_3681813
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Drops and bubbles
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic stability
Nonhomogeneous flows
Physics
Surface-tension-driven instability
title Thermocapillary motion of a slender viscous droplet in a channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermocapillary%20motion%20of%20a%20slender%20viscous%20droplet%20in%20a%20channel&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Katz,%20E.&rft.date=2012-02-01&rft.volume=24&rft.issue=2&rft.spage=022102&rft.epage=022102-11&rft.pages=022102-022102-11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3681813&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_3681813Thermocapillary_moti%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true