Monte Carlo calculation of electron transport properties of bulk AlN
The Monte Carlo method is used to simulate electron transport in bulk, wurtzite phase AlN using a three valley analytical band structure. Spherical, nonparabolic conduction band valleys at the Γ, K, and U symmetry points of the Brillouin zone are fitted to a first-principles band structure. The elec...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 1998-02, Vol.83 (3), p.1446-1449 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1449 |
---|---|
container_issue | 3 |
container_start_page | 1446 |
container_title | Journal of applied physics |
container_volume | 83 |
creator | Albrecht, J. D. Wang, R. P. Ruden, P. P. Farahmand, M. Brennan, K. F. |
description | The Monte Carlo method is used to simulate electron transport in bulk, wurtzite phase AlN using a three valley analytical band structure. Spherical, nonparabolic conduction band valleys at the Γ, K, and U symmetry points of the Brillouin zone are fitted to a first-principles band structure. The electron drift mobility is calculated as a function of temperature and ionized donor concentration in the ranges of 300–600 K and 1016–1018 cm−3, respectively. The effect of compensation on ionized impurity scattering and the associated change in the mobility are considered. The simulated electron steady-state drift velocity and valley occupancy for electric fields up to 600 kV/cm are presented for 300, 450, and 600 K. Our calculations predict that AlN will exhibit a much smaller negative differential mobility effect than GaN, and that the drift velocity versus electric field curve will show a very broad peak. |
doi_str_mv | 10.1063/1.366848 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_366848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_366848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-18a8ebb524ddeca8694b594a5825aaae1f6036e3d016ee242c883d0c88c4ab573</originalsourceid><addsrcrecordid>eNotj81KxDAUhYMoWEfBR-jSTcfcpEmT5VB1FEbd6LrcprcwGpuSZBa-vR3GzfmBw4GPsVvga-Ba3sNaam1qc8YK4MZWjVL8nBWcC6iMbewlu0rpi3MAI23BHl7DlKlsMfpQOvTu4DHvw1SGsSRPLscl54hTmkPM5RzDTDHvKR0H_cF_lxv_ds0uRvSJbv59xT6fHj_a52r3vn1pN7vKCQu5AoOG-l6JehjIodG27pWtURmhEJFg1FxqkgMHTSRq4YxZyqKuxl41csXuTr8uhpQijd0c9z8Yfzvg3ZG-g-5EL_8ALSxMgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monte Carlo calculation of electron transport properties of bulk AlN</title><source>AIP Digital Archive</source><creator>Albrecht, J. D. ; Wang, R. P. ; Ruden, P. P. ; Farahmand, M. ; Brennan, K. F.</creator><creatorcontrib>Albrecht, J. D. ; Wang, R. P. ; Ruden, P. P. ; Farahmand, M. ; Brennan, K. F.</creatorcontrib><description>The Monte Carlo method is used to simulate electron transport in bulk, wurtzite phase AlN using a three valley analytical band structure. Spherical, nonparabolic conduction band valleys at the Γ, K, and U symmetry points of the Brillouin zone are fitted to a first-principles band structure. The electron drift mobility is calculated as a function of temperature and ionized donor concentration in the ranges of 300–600 K and 1016–1018 cm−3, respectively. The effect of compensation on ionized impurity scattering and the associated change in the mobility are considered. The simulated electron steady-state drift velocity and valley occupancy for electric fields up to 600 kV/cm are presented for 300, 450, and 600 K. Our calculations predict that AlN will exhibit a much smaller negative differential mobility effect than GaN, and that the drift velocity versus electric field curve will show a very broad peak.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.366848</identifier><language>eng</language><ispartof>Journal of applied physics, 1998-02, Vol.83 (3), p.1446-1449</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-18a8ebb524ddeca8694b594a5825aaae1f6036e3d016ee242c883d0c88c4ab573</citedby><cites>FETCH-LOGICAL-c291t-18a8ebb524ddeca8694b594a5825aaae1f6036e3d016ee242c883d0c88c4ab573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Albrecht, J. D.</creatorcontrib><creatorcontrib>Wang, R. P.</creatorcontrib><creatorcontrib>Ruden, P. P.</creatorcontrib><creatorcontrib>Farahmand, M.</creatorcontrib><creatorcontrib>Brennan, K. F.</creatorcontrib><title>Monte Carlo calculation of electron transport properties of bulk AlN</title><title>Journal of applied physics</title><description>The Monte Carlo method is used to simulate electron transport in bulk, wurtzite phase AlN using a three valley analytical band structure. Spherical, nonparabolic conduction band valleys at the Γ, K, and U symmetry points of the Brillouin zone are fitted to a first-principles band structure. The electron drift mobility is calculated as a function of temperature and ionized donor concentration in the ranges of 300–600 K and 1016–1018 cm−3, respectively. The effect of compensation on ionized impurity scattering and the associated change in the mobility are considered. The simulated electron steady-state drift velocity and valley occupancy for electric fields up to 600 kV/cm are presented for 300, 450, and 600 K. Our calculations predict that AlN will exhibit a much smaller negative differential mobility effect than GaN, and that the drift velocity versus electric field curve will show a very broad peak.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNotj81KxDAUhYMoWEfBR-jSTcfcpEmT5VB1FEbd6LrcprcwGpuSZBa-vR3GzfmBw4GPsVvga-Ba3sNaam1qc8YK4MZWjVL8nBWcC6iMbewlu0rpi3MAI23BHl7DlKlsMfpQOvTu4DHvw1SGsSRPLscl54hTmkPM5RzDTDHvKR0H_cF_lxv_ds0uRvSJbv59xT6fHj_a52r3vn1pN7vKCQu5AoOG-l6JehjIodG27pWtURmhEJFg1FxqkgMHTSRq4YxZyqKuxl41csXuTr8uhpQijd0c9z8Yfzvg3ZG-g-5EL_8ALSxMgw</recordid><startdate>19980201</startdate><enddate>19980201</enddate><creator>Albrecht, J. D.</creator><creator>Wang, R. P.</creator><creator>Ruden, P. P.</creator><creator>Farahmand, M.</creator><creator>Brennan, K. F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980201</creationdate><title>Monte Carlo calculation of electron transport properties of bulk AlN</title><author>Albrecht, J. D. ; Wang, R. P. ; Ruden, P. P. ; Farahmand, M. ; Brennan, K. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-18a8ebb524ddeca8694b594a5825aaae1f6036e3d016ee242c883d0c88c4ab573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albrecht, J. D.</creatorcontrib><creatorcontrib>Wang, R. P.</creatorcontrib><creatorcontrib>Ruden, P. P.</creatorcontrib><creatorcontrib>Farahmand, M.</creatorcontrib><creatorcontrib>Brennan, K. F.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albrecht, J. D.</au><au>Wang, R. P.</au><au>Ruden, P. P.</au><au>Farahmand, M.</au><au>Brennan, K. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo calculation of electron transport properties of bulk AlN</atitle><jtitle>Journal of applied physics</jtitle><date>1998-02-01</date><risdate>1998</risdate><volume>83</volume><issue>3</issue><spage>1446</spage><epage>1449</epage><pages>1446-1449</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The Monte Carlo method is used to simulate electron transport in bulk, wurtzite phase AlN using a three valley analytical band structure. Spherical, nonparabolic conduction band valleys at the Γ, K, and U symmetry points of the Brillouin zone are fitted to a first-principles band structure. The electron drift mobility is calculated as a function of temperature and ionized donor concentration in the ranges of 300–600 K and 1016–1018 cm−3, respectively. The effect of compensation on ionized impurity scattering and the associated change in the mobility are considered. The simulated electron steady-state drift velocity and valley occupancy for electric fields up to 600 kV/cm are presented for 300, 450, and 600 K. Our calculations predict that AlN will exhibit a much smaller negative differential mobility effect than GaN, and that the drift velocity versus electric field curve will show a very broad peak.</abstract><doi>10.1063/1.366848</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 1998-02, Vol.83 (3), p.1446-1449 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_366848 |
source | AIP Digital Archive |
title | Monte Carlo calculation of electron transport properties of bulk AlN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20calculation%20of%20electron%20transport%20properties%20of%20bulk%20AlN&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Albrecht,%20J.%20D.&rft.date=1998-02-01&rft.volume=83&rft.issue=3&rft.spage=1446&rft.epage=1449&rft.pages=1446-1449&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.366848&rft_dat=%3Ccrossref%3E10_1063_1_366848%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |