Monte Carlo calculation of electron transport properties of bulk AlN

The Monte Carlo method is used to simulate electron transport in bulk, wurtzite phase AlN using a three valley analytical band structure. Spherical, nonparabolic conduction band valleys at the Γ, K, and U symmetry points of the Brillouin zone are fitted to a first-principles band structure. The elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1998-02, Vol.83 (3), p.1446-1449
Hauptverfasser: Albrecht, J. D., Wang, R. P., Ruden, P. P., Farahmand, M., Brennan, K. F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1449
container_issue 3
container_start_page 1446
container_title Journal of applied physics
container_volume 83
creator Albrecht, J. D.
Wang, R. P.
Ruden, P. P.
Farahmand, M.
Brennan, K. F.
description The Monte Carlo method is used to simulate electron transport in bulk, wurtzite phase AlN using a three valley analytical band structure. Spherical, nonparabolic conduction band valleys at the Γ, K, and U symmetry points of the Brillouin zone are fitted to a first-principles band structure. The electron drift mobility is calculated as a function of temperature and ionized donor concentration in the ranges of 300–600 K and 1016–1018 cm−3, respectively. The effect of compensation on ionized impurity scattering and the associated change in the mobility are considered. The simulated electron steady-state drift velocity and valley occupancy for electric fields up to 600 kV/cm are presented for 300, 450, and 600 K. Our calculations predict that AlN will exhibit a much smaller negative differential mobility effect than GaN, and that the drift velocity versus electric field curve will show a very broad peak.
doi_str_mv 10.1063/1.366848
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_366848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_366848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-18a8ebb524ddeca8694b594a5825aaae1f6036e3d016ee242c883d0c88c4ab573</originalsourceid><addsrcrecordid>eNotj81KxDAUhYMoWEfBR-jSTcfcpEmT5VB1FEbd6LrcprcwGpuSZBa-vR3GzfmBw4GPsVvga-Ba3sNaam1qc8YK4MZWjVL8nBWcC6iMbewlu0rpi3MAI23BHl7DlKlsMfpQOvTu4DHvw1SGsSRPLscl54hTmkPM5RzDTDHvKR0H_cF_lxv_ds0uRvSJbv59xT6fHj_a52r3vn1pN7vKCQu5AoOG-l6JehjIodG27pWtURmhEJFg1FxqkgMHTSRq4YxZyqKuxl41csXuTr8uhpQijd0c9z8Yfzvg3ZG-g-5EL_8ALSxMgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monte Carlo calculation of electron transport properties of bulk AlN</title><source>AIP Digital Archive</source><creator>Albrecht, J. D. ; Wang, R. P. ; Ruden, P. P. ; Farahmand, M. ; Brennan, K. F.</creator><creatorcontrib>Albrecht, J. D. ; Wang, R. P. ; Ruden, P. P. ; Farahmand, M. ; Brennan, K. F.</creatorcontrib><description>The Monte Carlo method is used to simulate electron transport in bulk, wurtzite phase AlN using a three valley analytical band structure. Spherical, nonparabolic conduction band valleys at the Γ, K, and U symmetry points of the Brillouin zone are fitted to a first-principles band structure. The electron drift mobility is calculated as a function of temperature and ionized donor concentration in the ranges of 300–600 K and 1016–1018 cm−3, respectively. The effect of compensation on ionized impurity scattering and the associated change in the mobility are considered. The simulated electron steady-state drift velocity and valley occupancy for electric fields up to 600 kV/cm are presented for 300, 450, and 600 K. Our calculations predict that AlN will exhibit a much smaller negative differential mobility effect than GaN, and that the drift velocity versus electric field curve will show a very broad peak.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.366848</identifier><language>eng</language><ispartof>Journal of applied physics, 1998-02, Vol.83 (3), p.1446-1449</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-18a8ebb524ddeca8694b594a5825aaae1f6036e3d016ee242c883d0c88c4ab573</citedby><cites>FETCH-LOGICAL-c291t-18a8ebb524ddeca8694b594a5825aaae1f6036e3d016ee242c883d0c88c4ab573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Albrecht, J. D.</creatorcontrib><creatorcontrib>Wang, R. P.</creatorcontrib><creatorcontrib>Ruden, P. P.</creatorcontrib><creatorcontrib>Farahmand, M.</creatorcontrib><creatorcontrib>Brennan, K. F.</creatorcontrib><title>Monte Carlo calculation of electron transport properties of bulk AlN</title><title>Journal of applied physics</title><description>The Monte Carlo method is used to simulate electron transport in bulk, wurtzite phase AlN using a three valley analytical band structure. Spherical, nonparabolic conduction band valleys at the Γ, K, and U symmetry points of the Brillouin zone are fitted to a first-principles band structure. The electron drift mobility is calculated as a function of temperature and ionized donor concentration in the ranges of 300–600 K and 1016–1018 cm−3, respectively. The effect of compensation on ionized impurity scattering and the associated change in the mobility are considered. The simulated electron steady-state drift velocity and valley occupancy for electric fields up to 600 kV/cm are presented for 300, 450, and 600 K. Our calculations predict that AlN will exhibit a much smaller negative differential mobility effect than GaN, and that the drift velocity versus electric field curve will show a very broad peak.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNotj81KxDAUhYMoWEfBR-jSTcfcpEmT5VB1FEbd6LrcprcwGpuSZBa-vR3GzfmBw4GPsVvga-Ba3sNaam1qc8YK4MZWjVL8nBWcC6iMbewlu0rpi3MAI23BHl7DlKlsMfpQOvTu4DHvw1SGsSRPLscl54hTmkPM5RzDTDHvKR0H_cF_lxv_ds0uRvSJbv59xT6fHj_a52r3vn1pN7vKCQu5AoOG-l6JehjIodG27pWtURmhEJFg1FxqkgMHTSRq4YxZyqKuxl41csXuTr8uhpQijd0c9z8Yfzvg3ZG-g-5EL_8ALSxMgw</recordid><startdate>19980201</startdate><enddate>19980201</enddate><creator>Albrecht, J. D.</creator><creator>Wang, R. P.</creator><creator>Ruden, P. P.</creator><creator>Farahmand, M.</creator><creator>Brennan, K. F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980201</creationdate><title>Monte Carlo calculation of electron transport properties of bulk AlN</title><author>Albrecht, J. D. ; Wang, R. P. ; Ruden, P. P. ; Farahmand, M. ; Brennan, K. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-18a8ebb524ddeca8694b594a5825aaae1f6036e3d016ee242c883d0c88c4ab573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albrecht, J. D.</creatorcontrib><creatorcontrib>Wang, R. P.</creatorcontrib><creatorcontrib>Ruden, P. P.</creatorcontrib><creatorcontrib>Farahmand, M.</creatorcontrib><creatorcontrib>Brennan, K. F.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albrecht, J. D.</au><au>Wang, R. P.</au><au>Ruden, P. P.</au><au>Farahmand, M.</au><au>Brennan, K. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo calculation of electron transport properties of bulk AlN</atitle><jtitle>Journal of applied physics</jtitle><date>1998-02-01</date><risdate>1998</risdate><volume>83</volume><issue>3</issue><spage>1446</spage><epage>1449</epage><pages>1446-1449</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The Monte Carlo method is used to simulate electron transport in bulk, wurtzite phase AlN using a three valley analytical band structure. Spherical, nonparabolic conduction band valleys at the Γ, K, and U symmetry points of the Brillouin zone are fitted to a first-principles band structure. The electron drift mobility is calculated as a function of temperature and ionized donor concentration in the ranges of 300–600 K and 1016–1018 cm−3, respectively. The effect of compensation on ionized impurity scattering and the associated change in the mobility are considered. The simulated electron steady-state drift velocity and valley occupancy for electric fields up to 600 kV/cm are presented for 300, 450, and 600 K. Our calculations predict that AlN will exhibit a much smaller negative differential mobility effect than GaN, and that the drift velocity versus electric field curve will show a very broad peak.</abstract><doi>10.1063/1.366848</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1998-02, Vol.83 (3), p.1446-1449
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_366848
source AIP Digital Archive
title Monte Carlo calculation of electron transport properties of bulk AlN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20calculation%20of%20electron%20transport%20properties%20of%20bulk%20AlN&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Albrecht,%20J.%20D.&rft.date=1998-02-01&rft.volume=83&rft.issue=3&rft.spage=1446&rft.epage=1449&rft.pages=1446-1449&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.366848&rft_dat=%3Ccrossref%3E10_1063_1_366848%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true