Magnetization, coercivity, and remanence in amorphous terbium–iron metalloid alloys

Crystalline terbium–iron compounds generate large magnetostrictive strains but for practical application require relatively large fields to overcome magnetocrystalline anisotropy. Their amorphous counterparts are magnetically softer and yet potentially useful magnetostrictive strains are still exhib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Physics 1997-04, Vol.81 (8), p.5808-5810
Hauptverfasser: Jerems, F., Greenough, R. D., Ahlers, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5810
container_issue 8
container_start_page 5808
container_title Journal of Applied Physics
container_volume 81
creator Jerems, F.
Greenough, R. D.
Ahlers, H.
description Crystalline terbium–iron compounds generate large magnetostrictive strains but for practical application require relatively large fields to overcome magnetocrystalline anisotropy. Their amorphous counterparts are magnetically softer and yet potentially useful magnetostrictive strains are still exhibited due to the presence of the Tb ions. As part of our investigation into the origins and magnitudes of the magnetostriction in amorphous rare earth–iron alloys, their magnetic properties have been subjected to close examination. Melt-spun ribbons of TbFe2 containing between 3 and 14 at. % boron were prepared and shown to be amorphous (>6 at. % B). The field and temperature dependences of magnetization have been measured in the region 4.5 K
doi_str_mv 10.1063/1.364675
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_364675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_364675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-a26b92a504e3e368cd999c1e2dfd2e7da5bcffd67dcc469e48bb61b687205f9a3</originalsourceid><addsrcrecordid>eNotkM1KAzEYAIMoWKvgI8Sbh27NzybZHKX4BxUv9rxkk29tpJuUJBXWk-_gG_okWuppLsMcBqFLSuaUSH5D51zWUokjNKGk0ZUSghyjCSGMVo1W-hSd5fxOCKUN1xO0ejZvAYr_NMXHMMM2QrL-w5dxhk1wOMFgAgQL2Adshpi267jLuEDq_G74-fr2KQY8QDGbTfQO7zHmc3TSm02Gi39O0er-7nXxWC1fHp4Wt8vKMkFLZZjsNDOC1MCBy8Y6rbWlwFzvGChnRGf73knlrK2lhrrpOkk72ShGRK8Nn6KrQzfm4ttsfQG7tjEEsKWttZRc_TnXB8emmHOCvt0mP5g0tpS0-2UtbQ_L-C-PqmCl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetization, coercivity, and remanence in amorphous terbium–iron metalloid alloys</title><source>AIP Digital Archive</source><creator>Jerems, F. ; Greenough, R. D. ; Ahlers, H.</creator><creatorcontrib>Jerems, F. ; Greenough, R. D. ; Ahlers, H.</creatorcontrib><description>Crystalline terbium–iron compounds generate large magnetostrictive strains but for practical application require relatively large fields to overcome magnetocrystalline anisotropy. Their amorphous counterparts are magnetically softer and yet potentially useful magnetostrictive strains are still exhibited due to the presence of the Tb ions. As part of our investigation into the origins and magnitudes of the magnetostriction in amorphous rare earth–iron alloys, their magnetic properties have been subjected to close examination. Melt-spun ribbons of TbFe2 containing between 3 and 14 at. % boron were prepared and shown to be amorphous (&gt;6 at. % B). The field and temperature dependences of magnetization have been measured in the region 4.5 K&lt;T&lt;300 K with fields up to 5 T using a superconducting quantum interference device magnetometer. The temperature dependences of coercivity and remanence have been determined. Zero field and field cooled magnetization curves indicate a spin freezing temperature ∼240 K. Analyzing the demagnetization curves in terms of the random anisotropy model proposed by Harris, Plischke, and Zuckermann (HPZ) [R. Harris, M. Plischke, and M. J. Zuckermann, Phys. Rev. Lett. 31, 160 (1974)] shows that the anisotropy and exchange energy in (TbFe2)1−xBx are of comparable magnitudes. Coupled with the sharp decrease of the anisotropy with increasing temperature this leads to an interesting thermal behavior of the remanence with a local minimum at ∼140 K. Different concentrations of boron seem to have no significant effect on the magnetic properties. Boron acts purely as a “glass former” necessary for producing amorphous TbFe2 by rapid cooling.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.364675</identifier><language>eng</language><publisher>United States</publisher><subject>AMORPHOUS STATE ; COERCIVE FORCE ; IRON ALLOYS ; MAGNETIZATION ; MAGNETOSTRICTION ; MATERIALS SCIENCE ; STRAINS ; TERBIUM ALLOYS</subject><ispartof>Journal of Applied Physics, 1997-04, Vol.81 (8), p.5808-5810</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c251t-a26b92a504e3e368cd999c1e2dfd2e7da5bcffd67dcc469e48bb61b687205f9a3</citedby><cites>FETCH-LOGICAL-c251t-a26b92a504e3e368cd999c1e2dfd2e7da5bcffd67dcc469e48bb61b687205f9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/496637$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jerems, F.</creatorcontrib><creatorcontrib>Greenough, R. D.</creatorcontrib><creatorcontrib>Ahlers, H.</creatorcontrib><title>Magnetization, coercivity, and remanence in amorphous terbium–iron metalloid alloys</title><title>Journal of Applied Physics</title><description>Crystalline terbium–iron compounds generate large magnetostrictive strains but for practical application require relatively large fields to overcome magnetocrystalline anisotropy. Their amorphous counterparts are magnetically softer and yet potentially useful magnetostrictive strains are still exhibited due to the presence of the Tb ions. As part of our investigation into the origins and magnitudes of the magnetostriction in amorphous rare earth–iron alloys, their magnetic properties have been subjected to close examination. Melt-spun ribbons of TbFe2 containing between 3 and 14 at. % boron were prepared and shown to be amorphous (&gt;6 at. % B). The field and temperature dependences of magnetization have been measured in the region 4.5 K&lt;T&lt;300 K with fields up to 5 T using a superconducting quantum interference device magnetometer. The temperature dependences of coercivity and remanence have been determined. Zero field and field cooled magnetization curves indicate a spin freezing temperature ∼240 K. Analyzing the demagnetization curves in terms of the random anisotropy model proposed by Harris, Plischke, and Zuckermann (HPZ) [R. Harris, M. Plischke, and M. J. Zuckermann, Phys. Rev. Lett. 31, 160 (1974)] shows that the anisotropy and exchange energy in (TbFe2)1−xBx are of comparable magnitudes. Coupled with the sharp decrease of the anisotropy with increasing temperature this leads to an interesting thermal behavior of the remanence with a local minimum at ∼140 K. Different concentrations of boron seem to have no significant effect on the magnetic properties. Boron acts purely as a “glass former” necessary for producing amorphous TbFe2 by rapid cooling.</description><subject>AMORPHOUS STATE</subject><subject>COERCIVE FORCE</subject><subject>IRON ALLOYS</subject><subject>MAGNETIZATION</subject><subject>MAGNETOSTRICTION</subject><subject>MATERIALS SCIENCE</subject><subject>STRAINS</subject><subject>TERBIUM ALLOYS</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEYAIMoWKvgI8Sbh27NzybZHKX4BxUv9rxkk29tpJuUJBXWk-_gG_okWuppLsMcBqFLSuaUSH5D51zWUokjNKGk0ZUSghyjCSGMVo1W-hSd5fxOCKUN1xO0ejZvAYr_NMXHMMM2QrL-w5dxhk1wOMFgAgQL2Adshpi267jLuEDq_G74-fr2KQY8QDGbTfQO7zHmc3TSm02Gi39O0er-7nXxWC1fHp4Wt8vKMkFLZZjsNDOC1MCBy8Y6rbWlwFzvGChnRGf73knlrK2lhrrpOkk72ShGRK8Nn6KrQzfm4ttsfQG7tjEEsKWttZRc_TnXB8emmHOCvt0mP5g0tpS0-2UtbQ_L-C-PqmCl</recordid><startdate>19970415</startdate><enddate>19970415</enddate><creator>Jerems, F.</creator><creator>Greenough, R. D.</creator><creator>Ahlers, H.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19970415</creationdate><title>Magnetization, coercivity, and remanence in amorphous terbium–iron metalloid alloys</title><author>Jerems, F. ; Greenough, R. D. ; Ahlers, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-a26b92a504e3e368cd999c1e2dfd2e7da5bcffd67dcc469e48bb61b687205f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>AMORPHOUS STATE</topic><topic>COERCIVE FORCE</topic><topic>IRON ALLOYS</topic><topic>MAGNETIZATION</topic><topic>MAGNETOSTRICTION</topic><topic>MATERIALS SCIENCE</topic><topic>STRAINS</topic><topic>TERBIUM ALLOYS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jerems, F.</creatorcontrib><creatorcontrib>Greenough, R. D.</creatorcontrib><creatorcontrib>Ahlers, H.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jerems, F.</au><au>Greenough, R. D.</au><au>Ahlers, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetization, coercivity, and remanence in amorphous terbium–iron metalloid alloys</atitle><jtitle>Journal of Applied Physics</jtitle><date>1997-04-15</date><risdate>1997</risdate><volume>81</volume><issue>8</issue><spage>5808</spage><epage>5810</epage><pages>5808-5810</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Crystalline terbium–iron compounds generate large magnetostrictive strains but for practical application require relatively large fields to overcome magnetocrystalline anisotropy. Their amorphous counterparts are magnetically softer and yet potentially useful magnetostrictive strains are still exhibited due to the presence of the Tb ions. As part of our investigation into the origins and magnitudes of the magnetostriction in amorphous rare earth–iron alloys, their magnetic properties have been subjected to close examination. Melt-spun ribbons of TbFe2 containing between 3 and 14 at. % boron were prepared and shown to be amorphous (&gt;6 at. % B). The field and temperature dependences of magnetization have been measured in the region 4.5 K&lt;T&lt;300 K with fields up to 5 T using a superconducting quantum interference device magnetometer. The temperature dependences of coercivity and remanence have been determined. Zero field and field cooled magnetization curves indicate a spin freezing temperature ∼240 K. Analyzing the demagnetization curves in terms of the random anisotropy model proposed by Harris, Plischke, and Zuckermann (HPZ) [R. Harris, M. Plischke, and M. J. Zuckermann, Phys. Rev. Lett. 31, 160 (1974)] shows that the anisotropy and exchange energy in (TbFe2)1−xBx are of comparable magnitudes. Coupled with the sharp decrease of the anisotropy with increasing temperature this leads to an interesting thermal behavior of the remanence with a local minimum at ∼140 K. Different concentrations of boron seem to have no significant effect on the magnetic properties. Boron acts purely as a “glass former” necessary for producing amorphous TbFe2 by rapid cooling.</abstract><cop>United States</cop><doi>10.1063/1.364675</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of Applied Physics, 1997-04, Vol.81 (8), p.5808-5810
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_364675
source AIP Digital Archive
subjects AMORPHOUS STATE
COERCIVE FORCE
IRON ALLOYS
MAGNETIZATION
MAGNETOSTRICTION
MATERIALS SCIENCE
STRAINS
TERBIUM ALLOYS
title Magnetization, coercivity, and remanence in amorphous terbium–iron metalloid alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetization,%20coercivity,%20and%20remanence%20in%20amorphous%20terbium%E2%80%93iron%20metalloid%20alloys&rft.jtitle=Journal%20of%20Applied%20Physics&rft.au=Jerems,%20F.&rft.date=1997-04-15&rft.volume=81&rft.issue=8&rft.spage=5808&rft.epage=5810&rft.pages=5808-5810&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.364675&rft_dat=%3Ccrossref_osti_%3E10_1063_1_364675%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true