Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field

We have developed a measurement setup allowing the investigation of the dynamics of magnetic nanoparticle suspensions in a rotating magnetic field. To determine the vector of the sample magnetization, sensitive fluxgate magnetometers are utilized detecting the sample's stray field. The phase la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2011-09, Vol.99 (11), p.112501-112501-3
Hauptverfasser: Dieckhoff, Jan, Schilling, Meinhard, Ludwig, Frank
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112501-3
container_issue 11
container_start_page 112501
container_title Applied physics letters
container_volume 99
creator Dieckhoff, Jan
Schilling, Meinhard
Ludwig, Frank
description We have developed a measurement setup allowing the investigation of the dynamics of magnetic nanoparticle suspensions in a rotating magnetic field. To determine the vector of the sample magnetization, sensitive fluxgate magnetometers are utilized detecting the sample's stray field. The phase lag between sample magnetization and rotating magnetic field vector is determined via the cross correlation spectrum. The phase lag spectra measured for various rotating field amplitudes on aqueous magnetite nanoparticle suspensions show good agreement with theory if the multidispersity of core and hydrodynamic size is taken into account.
doi_str_mv 10.1063/1.3639276
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3639276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-51ae1b7259eaabcb01656723524c9054fa640eecedc7055800c17b402dd8c38d3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI4u_AfZuuh40zRJuxFk8AUDbhSX4Ta5HSKddGgiOP_eeYkrV_dc-DgcPsauBcwEaHkrZlLLpjT6hE0EGFNIIepTNgEAWehGiXN2kdLn9lWllBP28dh_fS8xE28xkeeeMrkchsiHjq9wGSkHxyPGYY3jNvbE_SbiKrjEQ-TIxyFjDnH5B3eBen_JzjrsE10d75S9Pz68zZ-LxevTy_x-UTipIBdKIInWlKohxNa1ILTSppSqrFwDqupQV0DkyDsDStUATpi2gtL72snayym7OfS6cUhppM6ux7DCcWMF2J0RK-zRyJa9O7DJhd3oIf4P_2qxey12r0X-AHUCaSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Dieckhoff, Jan ; Schilling, Meinhard ; Ludwig, Frank</creator><creatorcontrib>Dieckhoff, Jan ; Schilling, Meinhard ; Ludwig, Frank</creatorcontrib><description>We have developed a measurement setup allowing the investigation of the dynamics of magnetic nanoparticle suspensions in a rotating magnetic field. To determine the vector of the sample magnetization, sensitive fluxgate magnetometers are utilized detecting the sample's stray field. The phase lag between sample magnetization and rotating magnetic field vector is determined via the cross correlation spectrum. The phase lag spectra measured for various rotating field amplitudes on aqueous magnetite nanoparticle suspensions show good agreement with theory if the multidispersity of core and hydrodynamic size is taken into account.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3639276</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2011-09, Vol.99 (11), p.112501-112501-3</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-51ae1b7259eaabcb01656723524c9054fa640eecedc7055800c17b402dd8c38d3</citedby><cites>FETCH-LOGICAL-c350t-51ae1b7259eaabcb01656723524c9054fa640eecedc7055800c17b402dd8c38d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3639276$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,1560,4513,27929,27930,76389,76395</link.rule.ids></links><search><creatorcontrib>Dieckhoff, Jan</creatorcontrib><creatorcontrib>Schilling, Meinhard</creatorcontrib><creatorcontrib>Ludwig, Frank</creatorcontrib><title>Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field</title><title>Applied physics letters</title><description>We have developed a measurement setup allowing the investigation of the dynamics of magnetic nanoparticle suspensions in a rotating magnetic field. To determine the vector of the sample magnetization, sensitive fluxgate magnetometers are utilized detecting the sample's stray field. The phase lag between sample magnetization and rotating magnetic field vector is determined via the cross correlation spectrum. The phase lag spectra measured for various rotating field amplitudes on aqueous magnetite nanoparticle suspensions show good agreement with theory if the multidispersity of core and hydrodynamic size is taken into account.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI4u_AfZuuh40zRJuxFk8AUDbhSX4Ta5HSKddGgiOP_eeYkrV_dc-DgcPsauBcwEaHkrZlLLpjT6hE0EGFNIIepTNgEAWehGiXN2kdLn9lWllBP28dh_fS8xE28xkeeeMrkchsiHjq9wGSkHxyPGYY3jNvbE_SbiKrjEQ-TIxyFjDnH5B3eBen_JzjrsE10d75S9Pz68zZ-LxevTy_x-UTipIBdKIInWlKohxNa1ILTSppSqrFwDqupQV0DkyDsDStUATpi2gtL72snayym7OfS6cUhppM6ux7DCcWMF2J0RK-zRyJa9O7DJhd3oIf4P_2qxey12r0X-AHUCaSg</recordid><startdate>20110912</startdate><enddate>20110912</enddate><creator>Dieckhoff, Jan</creator><creator>Schilling, Meinhard</creator><creator>Ludwig, Frank</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110912</creationdate><title>Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field</title><author>Dieckhoff, Jan ; Schilling, Meinhard ; Ludwig, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-51ae1b7259eaabcb01656723524c9054fa640eecedc7055800c17b402dd8c38d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dieckhoff, Jan</creatorcontrib><creatorcontrib>Schilling, Meinhard</creatorcontrib><creatorcontrib>Ludwig, Frank</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dieckhoff, Jan</au><au>Schilling, Meinhard</au><au>Ludwig, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field</atitle><jtitle>Applied physics letters</jtitle><date>2011-09-12</date><risdate>2011</risdate><volume>99</volume><issue>11</issue><spage>112501</spage><epage>112501-3</epage><pages>112501-112501-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We have developed a measurement setup allowing the investigation of the dynamics of magnetic nanoparticle suspensions in a rotating magnetic field. To determine the vector of the sample magnetization, sensitive fluxgate magnetometers are utilized detecting the sample's stray field. The phase lag between sample magnetization and rotating magnetic field vector is determined via the cross correlation spectrum. The phase lag spectra measured for various rotating field amplitudes on aqueous magnetite nanoparticle suspensions show good agreement with theory if the multidispersity of core and hydrodynamic size is taken into account.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3639276</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2011-09, Vol.99 (11), p.112501-112501-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_3639276
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluxgate%20based%20detection%20of%20magnetic%20nanoparticle%20dynamics%20in%20a%20rotating%20magnetic%20field&rft.jtitle=Applied%20physics%20letters&rft.au=Dieckhoff,%20Jan&rft.date=2011-09-12&rft.volume=99&rft.issue=11&rft.spage=112501&rft.epage=112501-3&rft.pages=112501-112501-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3639276&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true