Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field
We have developed a measurement setup allowing the investigation of the dynamics of magnetic nanoparticle suspensions in a rotating magnetic field. To determine the vector of the sample magnetization, sensitive fluxgate magnetometers are utilized detecting the sample's stray field. The phase la...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2011-09, Vol.99 (11), p.112501-112501-3 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112501-3 |
---|---|
container_issue | 11 |
container_start_page | 112501 |
container_title | Applied physics letters |
container_volume | 99 |
creator | Dieckhoff, Jan Schilling, Meinhard Ludwig, Frank |
description | We have developed a measurement setup allowing the investigation of the dynamics of magnetic nanoparticle suspensions in a rotating magnetic field. To determine the vector of the sample magnetization, sensitive fluxgate magnetometers are utilized detecting the sample's stray field. The phase lag between sample magnetization and rotating magnetic field vector is determined via the cross correlation spectrum. The phase lag spectra measured for various rotating field amplitudes on aqueous magnetite nanoparticle suspensions show good agreement with theory if the multidispersity of core and hydrodynamic size is taken into account. |
doi_str_mv | 10.1063/1.3639276 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3639276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-51ae1b7259eaabcb01656723524c9054fa640eecedc7055800c17b402dd8c38d3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI4u_AfZuuh40zRJuxFk8AUDbhSX4Ta5HSKddGgiOP_eeYkrV_dc-DgcPsauBcwEaHkrZlLLpjT6hE0EGFNIIepTNgEAWehGiXN2kdLn9lWllBP28dh_fS8xE28xkeeeMrkchsiHjq9wGSkHxyPGYY3jNvbE_SbiKrjEQ-TIxyFjDnH5B3eBen_JzjrsE10d75S9Pz68zZ-LxevTy_x-UTipIBdKIInWlKohxNa1ILTSppSqrFwDqupQV0DkyDsDStUATpi2gtL72snayym7OfS6cUhppM6ux7DCcWMF2J0RK-zRyJa9O7DJhd3oIf4P_2qxey12r0X-AHUCaSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Dieckhoff, Jan ; Schilling, Meinhard ; Ludwig, Frank</creator><creatorcontrib>Dieckhoff, Jan ; Schilling, Meinhard ; Ludwig, Frank</creatorcontrib><description>We have developed a measurement setup allowing the investigation of the dynamics of magnetic nanoparticle suspensions in a rotating magnetic field. To determine the vector of the sample magnetization, sensitive fluxgate magnetometers are utilized detecting the sample's stray field. The phase lag between sample magnetization and rotating magnetic field vector is determined via the cross correlation spectrum. The phase lag spectra measured for various rotating field amplitudes on aqueous magnetite nanoparticle suspensions show good agreement with theory if the multidispersity of core and hydrodynamic size is taken into account.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3639276</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2011-09, Vol.99 (11), p.112501-112501-3</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-51ae1b7259eaabcb01656723524c9054fa640eecedc7055800c17b402dd8c38d3</citedby><cites>FETCH-LOGICAL-c350t-51ae1b7259eaabcb01656723524c9054fa640eecedc7055800c17b402dd8c38d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3639276$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,1560,4513,27929,27930,76389,76395</link.rule.ids></links><search><creatorcontrib>Dieckhoff, Jan</creatorcontrib><creatorcontrib>Schilling, Meinhard</creatorcontrib><creatorcontrib>Ludwig, Frank</creatorcontrib><title>Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field</title><title>Applied physics letters</title><description>We have developed a measurement setup allowing the investigation of the dynamics of magnetic nanoparticle suspensions in a rotating magnetic field. To determine the vector of the sample magnetization, sensitive fluxgate magnetometers are utilized detecting the sample's stray field. The phase lag between sample magnetization and rotating magnetic field vector is determined via the cross correlation spectrum. The phase lag spectra measured for various rotating field amplitudes on aqueous magnetite nanoparticle suspensions show good agreement with theory if the multidispersity of core and hydrodynamic size is taken into account.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI4u_AfZuuh40zRJuxFk8AUDbhSX4Ta5HSKddGgiOP_eeYkrV_dc-DgcPsauBcwEaHkrZlLLpjT6hE0EGFNIIepTNgEAWehGiXN2kdLn9lWllBP28dh_fS8xE28xkeeeMrkchsiHjq9wGSkHxyPGYY3jNvbE_SbiKrjEQ-TIxyFjDnH5B3eBen_JzjrsE10d75S9Pz68zZ-LxevTy_x-UTipIBdKIInWlKohxNa1ILTSppSqrFwDqupQV0DkyDsDStUATpi2gtL72snayym7OfS6cUhppM6ux7DCcWMF2J0RK-zRyJa9O7DJhd3oIf4P_2qxey12r0X-AHUCaSg</recordid><startdate>20110912</startdate><enddate>20110912</enddate><creator>Dieckhoff, Jan</creator><creator>Schilling, Meinhard</creator><creator>Ludwig, Frank</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110912</creationdate><title>Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field</title><author>Dieckhoff, Jan ; Schilling, Meinhard ; Ludwig, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-51ae1b7259eaabcb01656723524c9054fa640eecedc7055800c17b402dd8c38d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dieckhoff, Jan</creatorcontrib><creatorcontrib>Schilling, Meinhard</creatorcontrib><creatorcontrib>Ludwig, Frank</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dieckhoff, Jan</au><au>Schilling, Meinhard</au><au>Ludwig, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field</atitle><jtitle>Applied physics letters</jtitle><date>2011-09-12</date><risdate>2011</risdate><volume>99</volume><issue>11</issue><spage>112501</spage><epage>112501-3</epage><pages>112501-112501-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We have developed a measurement setup allowing the investigation of the dynamics of magnetic nanoparticle suspensions in a rotating magnetic field. To determine the vector of the sample magnetization, sensitive fluxgate magnetometers are utilized detecting the sample's stray field. The phase lag between sample magnetization and rotating magnetic field vector is determined via the cross correlation spectrum. The phase lag spectra measured for various rotating field amplitudes on aqueous magnetite nanoparticle suspensions show good agreement with theory if the multidispersity of core and hydrodynamic size is taken into account.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3639276</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2011-09, Vol.99 (11), p.112501-112501-3 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3639276 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
title | Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluxgate%20based%20detection%20of%20magnetic%20nanoparticle%20dynamics%20in%20a%20rotating%20magnetic%20field&rft.jtitle=Applied%20physics%20letters&rft.au=Dieckhoff,%20Jan&rft.date=2011-09-12&rft.volume=99&rft.issue=11&rft.spage=112501&rft.epage=112501-3&rft.pages=112501-112501-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3639276&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |