Polymer composite thermistors for temperature and current sensors

The electrical resistivity of polymer composites is studied as a function of temperature. The initial resistivity ρ of thermoplastic or thermoset containing a metallic filler is in the range of 1–10×10−2 Ω cm. Around the curing temperature of epoxies, the resistivity increases by eight to twelve ord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1996-12, Vol.80 (11), p.6091-6096
1. Verfasser: Strümpler, Ralf
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6096
container_issue 11
container_start_page 6091
container_title Journal of applied physics
container_volume 80
creator Strümpler, Ralf
description The electrical resistivity of polymer composites is studied as a function of temperature. The initial resistivity ρ of thermoplastic or thermoset containing a metallic filler is in the range of 1–10×10−2 Ω cm. Around the curing temperature of epoxies, the resistivity increases by eight to twelve orders of magnitude. For thermoplastic polymers, however, the transition temperature is related to the melting temperature at which a strong volume increase occurs. Hence, the choice of polymer and its processing determine the transition temperature from a conducting state to an insulating state. For a variety of polymers we have observed transitions between 80 and 200 °C. Due to a sharp and strong transition at a predetermined temperature, such materials can be used as temperature sensors. Since the resistivity of the cold state is low, they can also carry rather high currents. The balance between heating and cooling determines then a critical value for the current. Thus, the materials can also serve as current sensors.
doi_str_mv 10.1063/1.363682
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_363682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_363682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-cdf408274c06514d6364e37c072f23f0c528915b7ee6359320138184485559293</originalsourceid><addsrcrecordid>eNotj81Kw0AURgdRsFbBR5ilm9R75yeZWZaiVijoQtchTu5gpMmEO9NF395KXZ3Nx-E7QtwjrBBq_YgrXevaqQuxQHC-aqyFS7EAUFg53_hrcZPzDwCi034h1u9pfxyJZUjjnPJQSJZv4nHIJXGWMbEsNM7EXTkwyW7qZTgw01RkpimfNrfiKnb7THf_XIrP56ePzbbavb28bta7KiiPpQp9NOBUYwLUFk1_OmlINwEaFZWOEKxyHu1XQ1Rr67UC1A6dMc5a65XXS_Fw9gZOOTPFduZh7PjYIrR_6S2253T9CztgSiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polymer composite thermistors for temperature and current sensors</title><source>AIP Digital Archive</source><creator>Strümpler, Ralf</creator><creatorcontrib>Strümpler, Ralf</creatorcontrib><description>The electrical resistivity of polymer composites is studied as a function of temperature. The initial resistivity ρ of thermoplastic or thermoset containing a metallic filler is in the range of 1–10×10−2 Ω cm. Around the curing temperature of epoxies, the resistivity increases by eight to twelve orders of magnitude. For thermoplastic polymers, however, the transition temperature is related to the melting temperature at which a strong volume increase occurs. Hence, the choice of polymer and its processing determine the transition temperature from a conducting state to an insulating state. For a variety of polymers we have observed transitions between 80 and 200 °C. Due to a sharp and strong transition at a predetermined temperature, such materials can be used as temperature sensors. Since the resistivity of the cold state is low, they can also carry rather high currents. The balance between heating and cooling determines then a critical value for the current. Thus, the materials can also serve as current sensors.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.363682</identifier><language>eng</language><ispartof>Journal of applied physics, 1996-12, Vol.80 (11), p.6091-6096</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-cdf408274c06514d6364e37c072f23f0c528915b7ee6359320138184485559293</citedby><cites>FETCH-LOGICAL-c291t-cdf408274c06514d6364e37c072f23f0c528915b7ee6359320138184485559293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Strümpler, Ralf</creatorcontrib><title>Polymer composite thermistors for temperature and current sensors</title><title>Journal of applied physics</title><description>The electrical resistivity of polymer composites is studied as a function of temperature. The initial resistivity ρ of thermoplastic or thermoset containing a metallic filler is in the range of 1–10×10−2 Ω cm. Around the curing temperature of epoxies, the resistivity increases by eight to twelve orders of magnitude. For thermoplastic polymers, however, the transition temperature is related to the melting temperature at which a strong volume increase occurs. Hence, the choice of polymer and its processing determine the transition temperature from a conducting state to an insulating state. For a variety of polymers we have observed transitions between 80 and 200 °C. Due to a sharp and strong transition at a predetermined temperature, such materials can be used as temperature sensors. Since the resistivity of the cold state is low, they can also carry rather high currents. The balance between heating and cooling determines then a critical value for the current. Thus, the materials can also serve as current sensors.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNotj81Kw0AURgdRsFbBR5ilm9R75yeZWZaiVijoQtchTu5gpMmEO9NF395KXZ3Nx-E7QtwjrBBq_YgrXevaqQuxQHC-aqyFS7EAUFg53_hrcZPzDwCi034h1u9pfxyJZUjjnPJQSJZv4nHIJXGWMbEsNM7EXTkwyW7qZTgw01RkpimfNrfiKnb7THf_XIrP56ePzbbavb28bta7KiiPpQp9NOBUYwLUFk1_OmlINwEaFZWOEKxyHu1XQ1Rr67UC1A6dMc5a65XXS_Fw9gZOOTPFduZh7PjYIrR_6S2253T9CztgSiA</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>Strümpler, Ralf</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19961201</creationdate><title>Polymer composite thermistors for temperature and current sensors</title><author>Strümpler, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-cdf408274c06514d6364e37c072f23f0c528915b7ee6359320138184485559293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strümpler, Ralf</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strümpler, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer composite thermistors for temperature and current sensors</atitle><jtitle>Journal of applied physics</jtitle><date>1996-12-01</date><risdate>1996</risdate><volume>80</volume><issue>11</issue><spage>6091</spage><epage>6096</epage><pages>6091-6096</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The electrical resistivity of polymer composites is studied as a function of temperature. The initial resistivity ρ of thermoplastic or thermoset containing a metallic filler is in the range of 1–10×10−2 Ω cm. Around the curing temperature of epoxies, the resistivity increases by eight to twelve orders of magnitude. For thermoplastic polymers, however, the transition temperature is related to the melting temperature at which a strong volume increase occurs. Hence, the choice of polymer and its processing determine the transition temperature from a conducting state to an insulating state. For a variety of polymers we have observed transitions between 80 and 200 °C. Due to a sharp and strong transition at a predetermined temperature, such materials can be used as temperature sensors. Since the resistivity of the cold state is low, they can also carry rather high currents. The balance between heating and cooling determines then a critical value for the current. Thus, the materials can also serve as current sensors.</abstract><doi>10.1063/1.363682</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1996-12, Vol.80 (11), p.6091-6096
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_363682
source AIP Digital Archive
title Polymer composite thermistors for temperature and current sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer%20composite%20thermistors%20for%20temperature%20and%20current%20sensors&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Str%C3%BCmpler,%20Ralf&rft.date=1996-12-01&rft.volume=80&rft.issue=11&rft.spage=6091&rft.epage=6096&rft.pages=6091-6096&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.363682&rft_dat=%3Ccrossref%3E10_1063_1_363682%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true