Flow-induced voltage generation in high-purity metallic and semiconducting carbon nanotubes

We investigated the flow-induced voltage generation of single-walled carbon nanotubes (SWCNTs), comparing metallic and semiconducting types, flow velocity, and different ionic concentration solutions. The induced fluid-flow voltage was measured using a microfluidics chip that we fabricated with a SW...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2011-09, Vol.99 (10), p.104103-104103-3
Hauptverfasser: Ho Lee, Seung, Kim, Duckjong, Kim, Soohyun, Han, Chang-Soo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104103-3
container_issue 10
container_start_page 104103
container_title Applied physics letters
container_volume 99
creator Ho Lee, Seung
Kim, Duckjong
Kim, Soohyun
Han, Chang-Soo
description We investigated the flow-induced voltage generation of single-walled carbon nanotubes (SWCNTs), comparing metallic and semiconducting types, flow velocity, and different ionic concentration solutions. The induced fluid-flow voltage was measured using a microfluidics chip that we fabricated with a SWCNT film embedded between its metal electrodes. We found that the voltage generated for semiconducting nanotubes was three times greater than that for metallic nanotubes and that both types of SWCNTs showed an unexpected reversal in signal sign, likely due to the switching of the major carrier between holes and electrons. These generated voltages increased proportionally for both types of SWCNTs as functions of flow velocity and ionic concentration.
doi_str_mv 10.1063/1.3634209
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3634209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-1238f2e2ed99f3ab24da53488870faee133fbedbd2e1ebd2e731b6924249d1093</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_0GuHlKTzH7lIkixKhS86MlDyCaz28g2Wzap0n9v1-7Vy7wMPO_APITcCr4QvIB7sYACMsnVGZkJXpYMhKjOyYxzDqxQubgkVzF-HddcAszI56rrf5gPbm_R0e--S6ZF2mLAwSTfB-oD3fh2w3b7wacD3WIyXectNcHRiFtv-7GbfGipNUN9bAQT-rSvMV6Ti8Z0EW-mnJOP1dP78oWt355fl49rZiHniQkJVSNRolOqAVPLzJkcsqqqSt4YRAHQ1OhqJ1HgOEsQdaFkJjPlBFcwJ3enu3boYxyw0bvBb81w0ILr0YoWerJyZB9ObLQ-_X34Pzyq0ZMaPamBXyR1a7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flow-induced voltage generation in high-purity metallic and semiconducting carbon nanotubes</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Ho Lee, Seung ; Kim, Duckjong ; Kim, Soohyun ; Han, Chang-Soo</creator><creatorcontrib>Ho Lee, Seung ; Kim, Duckjong ; Kim, Soohyun ; Han, Chang-Soo</creatorcontrib><description>We investigated the flow-induced voltage generation of single-walled carbon nanotubes (SWCNTs), comparing metallic and semiconducting types, flow velocity, and different ionic concentration solutions. The induced fluid-flow voltage was measured using a microfluidics chip that we fabricated with a SWCNT film embedded between its metal electrodes. We found that the voltage generated for semiconducting nanotubes was three times greater than that for metallic nanotubes and that both types of SWCNTs showed an unexpected reversal in signal sign, likely due to the switching of the major carrier between holes and electrons. These generated voltages increased proportionally for both types of SWCNTs as functions of flow velocity and ionic concentration.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3634209</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2011-09, Vol.99 (10), p.104103-104103-3</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-1238f2e2ed99f3ab24da53488870faee133fbedbd2e1ebd2e731b6924249d1093</citedby><cites>FETCH-LOGICAL-c350t-1238f2e2ed99f3ab24da53488870faee133fbedbd2e1ebd2e731b6924249d1093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3634209$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1558,4510,27923,27924,76155,76161</link.rule.ids></links><search><creatorcontrib>Ho Lee, Seung</creatorcontrib><creatorcontrib>Kim, Duckjong</creatorcontrib><creatorcontrib>Kim, Soohyun</creatorcontrib><creatorcontrib>Han, Chang-Soo</creatorcontrib><title>Flow-induced voltage generation in high-purity metallic and semiconducting carbon nanotubes</title><title>Applied physics letters</title><description>We investigated the flow-induced voltage generation of single-walled carbon nanotubes (SWCNTs), comparing metallic and semiconducting types, flow velocity, and different ionic concentration solutions. The induced fluid-flow voltage was measured using a microfluidics chip that we fabricated with a SWCNT film embedded between its metal electrodes. We found that the voltage generated for semiconducting nanotubes was three times greater than that for metallic nanotubes and that both types of SWCNTs showed an unexpected reversal in signal sign, likely due to the switching of the major carrier between holes and electrons. These generated voltages increased proportionally for both types of SWCNTs as functions of flow velocity and ionic concentration.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_0GuHlKTzH7lIkixKhS86MlDyCaz28g2Wzap0n9v1-7Vy7wMPO_APITcCr4QvIB7sYACMsnVGZkJXpYMhKjOyYxzDqxQubgkVzF-HddcAszI56rrf5gPbm_R0e--S6ZF2mLAwSTfB-oD3fh2w3b7wacD3WIyXectNcHRiFtv-7GbfGipNUN9bAQT-rSvMV6Ti8Z0EW-mnJOP1dP78oWt355fl49rZiHniQkJVSNRolOqAVPLzJkcsqqqSt4YRAHQ1OhqJ1HgOEsQdaFkJjPlBFcwJ3enu3boYxyw0bvBb81w0ILr0YoWerJyZB9ObLQ-_X34Pzyq0ZMaPamBXyR1a7o</recordid><startdate>20110905</startdate><enddate>20110905</enddate><creator>Ho Lee, Seung</creator><creator>Kim, Duckjong</creator><creator>Kim, Soohyun</creator><creator>Han, Chang-Soo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110905</creationdate><title>Flow-induced voltage generation in high-purity metallic and semiconducting carbon nanotubes</title><author>Ho Lee, Seung ; Kim, Duckjong ; Kim, Soohyun ; Han, Chang-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-1238f2e2ed99f3ab24da53488870faee133fbedbd2e1ebd2e731b6924249d1093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho Lee, Seung</creatorcontrib><creatorcontrib>Kim, Duckjong</creatorcontrib><creatorcontrib>Kim, Soohyun</creatorcontrib><creatorcontrib>Han, Chang-Soo</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho Lee, Seung</au><au>Kim, Duckjong</au><au>Kim, Soohyun</au><au>Han, Chang-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow-induced voltage generation in high-purity metallic and semiconducting carbon nanotubes</atitle><jtitle>Applied physics letters</jtitle><date>2011-09-05</date><risdate>2011</risdate><volume>99</volume><issue>10</issue><spage>104103</spage><epage>104103-3</epage><pages>104103-104103-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We investigated the flow-induced voltage generation of single-walled carbon nanotubes (SWCNTs), comparing metallic and semiconducting types, flow velocity, and different ionic concentration solutions. The induced fluid-flow voltage was measured using a microfluidics chip that we fabricated with a SWCNT film embedded between its metal electrodes. We found that the voltage generated for semiconducting nanotubes was three times greater than that for metallic nanotubes and that both types of SWCNTs showed an unexpected reversal in signal sign, likely due to the switching of the major carrier between holes and electrons. These generated voltages increased proportionally for both types of SWCNTs as functions of flow velocity and ionic concentration.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3634209</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2011-09, Vol.99 (10), p.104103-104103-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_3634209
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Flow-induced voltage generation in high-purity metallic and semiconducting carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A46%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow-induced%20voltage%20generation%20in%20high-purity%20metallic%20and%20semiconducting%20carbon%20nanotubes&rft.jtitle=Applied%20physics%20letters&rft.au=Ho%20Lee,%20Seung&rft.date=2011-09-05&rft.volume=99&rft.issue=10&rft.spage=104103&rft.epage=104103-3&rft.pages=104103-104103-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3634209&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true