Cr metal thin film memory
As state of the art flash memory technologies scale down to sub 30 nm node, conventional floating gate flash memory approaches its physical scaling limit mainly because of the high gate coupling ratio (GCR) requirement to secure proper memory window. Here, we report a novel flash memory device calle...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2011-09, Vol.110 (5), p.054504-054504-5 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 054504-5 |
---|---|
container_issue | 5 |
container_start_page | 054504 |
container_title | Journal of applied physics |
container_volume | 110 |
creator | Hong, Augustin J. Kim, Jiyoung Kim, Kyoungwhan Wang, Yong Xiu, Faxian Jeon, Jaeseok Park, Jemin Rauda, Iris Chen, Li-Min Yang, Yang Tolbert, Sarah Zou, Jin Wang, Kang L. |
description | As state of the art flash memory technologies scale down to sub 30 nm node, conventional floating gate flash memory approaches its physical scaling limit mainly because of the high gate coupling ratio (GCR) requirement to secure proper memory window. Here, we report a novel flash memory device called Cr metal thin film memory (MTFM) that can circumvent the GCR issue and extend flash memory scalability by employing Cr thin film as a storage layer. Cr metal thin film memory devices with simple and low temperature processes produced a wide memory window of 10 V at the ±18 V voltage sweep with GCR of only 0.3. Such a large window can be adopted for multi-level cell operations, which can further increase the memory density. Also, retention measurement shows more than 10 years retention time due to higher energy barrier between Cr metal and tunnel oxide than conventional poly silicon and tunnel oxide. Cross section transmission electron microscope (TEM) images showed the structure and accurate dimensions of the Cr MTFM device with continuous Cr film and sharp interfaces. As for material characterizations, an amorphous like Cr phase was observed through TEM and x-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) confirmed the Cr-Cr bond and Cr-O bond near the Cr surface after evaporation and rapid thermal annealing. This metal thin film memory may open a new route to achieve the terabit level flash memory. |
doi_str_mv | 10.1063/1.3626901 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3626901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-235c4eeb505570a6aab295a24d16672e42bd5cb205f73f5663d1d0983f369ffa3</originalsourceid><addsrcrecordid>eNp1z7FLxDAUx_EgCtbTwdGtq0PP9_L60mYRpHgqHLjoHNI0wUp7laTL_fdevVudHg--_OAjxC3CGkHRA65JSaUBz0SGUOuiYoZzkQFILGpd6UtxldI3AGJNOhN3TcxHP9shn7_6XR76YTz84xT31-Ii2CH5m9Ndic_N80fzWmzfX96ap23hiGEuJLErvW8ZmCuwytpWaray7FCpSvpSth27VgKHigIrRR12oGsKpHQIllbi_rjr4pRS9MH8xH60cW8QzGIyaE6mQ_t4bJPrZzv30-7_uInmD2YWmFlgZqRf-3ZRVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cr metal thin film memory</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Hong, Augustin J. ; Kim, Jiyoung ; Kim, Kyoungwhan ; Wang, Yong ; Xiu, Faxian ; Jeon, Jaeseok ; Park, Jemin ; Rauda, Iris ; Chen, Li-Min ; Yang, Yang ; Tolbert, Sarah ; Zou, Jin ; Wang, Kang L.</creator><creatorcontrib>Hong, Augustin J. ; Kim, Jiyoung ; Kim, Kyoungwhan ; Wang, Yong ; Xiu, Faxian ; Jeon, Jaeseok ; Park, Jemin ; Rauda, Iris ; Chen, Li-Min ; Yang, Yang ; Tolbert, Sarah ; Zou, Jin ; Wang, Kang L.</creatorcontrib><description>As state of the art flash memory technologies scale down to sub 30 nm node, conventional floating gate flash memory approaches its physical scaling limit mainly because of the high gate coupling ratio (GCR) requirement to secure proper memory window. Here, we report a novel flash memory device called Cr metal thin film memory (MTFM) that can circumvent the GCR issue and extend flash memory scalability by employing Cr thin film as a storage layer. Cr metal thin film memory devices with simple and low temperature processes produced a wide memory window of 10 V at the ±18 V voltage sweep with GCR of only 0.3. Such a large window can be adopted for multi-level cell operations, which can further increase the memory density. Also, retention measurement shows more than 10 years retention time due to higher energy barrier between Cr metal and tunnel oxide than conventional poly silicon and tunnel oxide. Cross section transmission electron microscope (TEM) images showed the structure and accurate dimensions of the Cr MTFM device with continuous Cr film and sharp interfaces. As for material characterizations, an amorphous like Cr phase was observed through TEM and x-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) confirmed the Cr-Cr bond and Cr-O bond near the Cr surface after evaporation and rapid thermal annealing. This metal thin film memory may open a new route to achieve the terabit level flash memory.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3626901</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2011-09, Vol.110 (5), p.054504-054504-5</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-235c4eeb505570a6aab295a24d16672e42bd5cb205f73f5663d1d0983f369ffa3</citedby><cites>FETCH-LOGICAL-c350t-235c4eeb505570a6aab295a24d16672e42bd5cb205f73f5663d1d0983f369ffa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3626901$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27901,27902,76126,76132</link.rule.ids></links><search><creatorcontrib>Hong, Augustin J.</creatorcontrib><creatorcontrib>Kim, Jiyoung</creatorcontrib><creatorcontrib>Kim, Kyoungwhan</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Xiu, Faxian</creatorcontrib><creatorcontrib>Jeon, Jaeseok</creatorcontrib><creatorcontrib>Park, Jemin</creatorcontrib><creatorcontrib>Rauda, Iris</creatorcontrib><creatorcontrib>Chen, Li-Min</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Tolbert, Sarah</creatorcontrib><creatorcontrib>Zou, Jin</creatorcontrib><creatorcontrib>Wang, Kang L.</creatorcontrib><title>Cr metal thin film memory</title><title>Journal of applied physics</title><description>As state of the art flash memory technologies scale down to sub 30 nm node, conventional floating gate flash memory approaches its physical scaling limit mainly because of the high gate coupling ratio (GCR) requirement to secure proper memory window. Here, we report a novel flash memory device called Cr metal thin film memory (MTFM) that can circumvent the GCR issue and extend flash memory scalability by employing Cr thin film as a storage layer. Cr metal thin film memory devices with simple and low temperature processes produced a wide memory window of 10 V at the ±18 V voltage sweep with GCR of only 0.3. Such a large window can be adopted for multi-level cell operations, which can further increase the memory density. Also, retention measurement shows more than 10 years retention time due to higher energy barrier between Cr metal and tunnel oxide than conventional poly silicon and tunnel oxide. Cross section transmission electron microscope (TEM) images showed the structure and accurate dimensions of the Cr MTFM device with continuous Cr film and sharp interfaces. As for material characterizations, an amorphous like Cr phase was observed through TEM and x-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) confirmed the Cr-Cr bond and Cr-O bond near the Cr surface after evaporation and rapid thermal annealing. This metal thin film memory may open a new route to achieve the terabit level flash memory.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1z7FLxDAUx_EgCtbTwdGtq0PP9_L60mYRpHgqHLjoHNI0wUp7laTL_fdevVudHg--_OAjxC3CGkHRA65JSaUBz0SGUOuiYoZzkQFILGpd6UtxldI3AGJNOhN3TcxHP9shn7_6XR76YTz84xT31-Ii2CH5m9Ndic_N80fzWmzfX96ap23hiGEuJLErvW8ZmCuwytpWaray7FCpSvpSth27VgKHigIrRR12oGsKpHQIllbi_rjr4pRS9MH8xH60cW8QzGIyaE6mQ_t4bJPrZzv30-7_uInmD2YWmFlgZqRf-3ZRVQ</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Hong, Augustin J.</creator><creator>Kim, Jiyoung</creator><creator>Kim, Kyoungwhan</creator><creator>Wang, Yong</creator><creator>Xiu, Faxian</creator><creator>Jeon, Jaeseok</creator><creator>Park, Jemin</creator><creator>Rauda, Iris</creator><creator>Chen, Li-Min</creator><creator>Yang, Yang</creator><creator>Tolbert, Sarah</creator><creator>Zou, Jin</creator><creator>Wang, Kang L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110901</creationdate><title>Cr metal thin film memory</title><author>Hong, Augustin J. ; Kim, Jiyoung ; Kim, Kyoungwhan ; Wang, Yong ; Xiu, Faxian ; Jeon, Jaeseok ; Park, Jemin ; Rauda, Iris ; Chen, Li-Min ; Yang, Yang ; Tolbert, Sarah ; Zou, Jin ; Wang, Kang L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-235c4eeb505570a6aab295a24d16672e42bd5cb205f73f5663d1d0983f369ffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Augustin J.</creatorcontrib><creatorcontrib>Kim, Jiyoung</creatorcontrib><creatorcontrib>Kim, Kyoungwhan</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Xiu, Faxian</creatorcontrib><creatorcontrib>Jeon, Jaeseok</creatorcontrib><creatorcontrib>Park, Jemin</creatorcontrib><creatorcontrib>Rauda, Iris</creatorcontrib><creatorcontrib>Chen, Li-Min</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Tolbert, Sarah</creatorcontrib><creatorcontrib>Zou, Jin</creatorcontrib><creatorcontrib>Wang, Kang L.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Augustin J.</au><au>Kim, Jiyoung</au><au>Kim, Kyoungwhan</au><au>Wang, Yong</au><au>Xiu, Faxian</au><au>Jeon, Jaeseok</au><au>Park, Jemin</au><au>Rauda, Iris</au><au>Chen, Li-Min</au><au>Yang, Yang</au><au>Tolbert, Sarah</au><au>Zou, Jin</au><au>Wang, Kang L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cr metal thin film memory</atitle><jtitle>Journal of applied physics</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>110</volume><issue>5</issue><spage>054504</spage><epage>054504-5</epage><pages>054504-054504-5</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>As state of the art flash memory technologies scale down to sub 30 nm node, conventional floating gate flash memory approaches its physical scaling limit mainly because of the high gate coupling ratio (GCR) requirement to secure proper memory window. Here, we report a novel flash memory device called Cr metal thin film memory (MTFM) that can circumvent the GCR issue and extend flash memory scalability by employing Cr thin film as a storage layer. Cr metal thin film memory devices with simple and low temperature processes produced a wide memory window of 10 V at the ±18 V voltage sweep with GCR of only 0.3. Such a large window can be adopted for multi-level cell operations, which can further increase the memory density. Also, retention measurement shows more than 10 years retention time due to higher energy barrier between Cr metal and tunnel oxide than conventional poly silicon and tunnel oxide. Cross section transmission electron microscope (TEM) images showed the structure and accurate dimensions of the Cr MTFM device with continuous Cr film and sharp interfaces. As for material characterizations, an amorphous like Cr phase was observed through TEM and x-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) confirmed the Cr-Cr bond and Cr-O bond near the Cr surface after evaporation and rapid thermal annealing. This metal thin film memory may open a new route to achieve the terabit level flash memory.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3626901</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2011-09, Vol.110 (5), p.054504-054504-5 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3626901 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
title | Cr metal thin film memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cr%20metal%20thin%20film%20memory&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Hong,%20Augustin%20J.&rft.date=2011-09-01&rft.volume=110&rft.issue=5&rft.spage=054504&rft.epage=054504-5&rft.pages=054504-054504-5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3626901&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |