Design evaluation of graphene nanoribbon nanoelectromechanical devices

Computational studies on nanoelectromechanical switches based on bilayer graphene nanoribbons (BGNRs) with different designs are presented in this work. By varying the interlayer distance via electrostatic means, the conductance of the BGNR can be changed in order to achieve ON-states and OFF-states...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2011-07, Vol.110 (2), p.024302-024302-6
Hauptverfasser: Lam, Kai-Tak, Stephen Leo, Marie, Lee, Chengkuo, Liang, Gengchiau
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 024302-6
container_issue 2
container_start_page 024302
container_title Journal of applied physics
container_volume 110
creator Lam, Kai-Tak
Stephen Leo, Marie
Lee, Chengkuo
Liang, Gengchiau
description Computational studies on nanoelectromechanical switches based on bilayer graphene nanoribbons (BGNRs) with different designs are presented in this work. By varying the interlayer distance via electrostatic means, the conductance of the BGNR can be changed in order to achieve ON-states and OFF-states, thereby mimicking the function of a switch. Two actuator designs based on the modified capacitive parallel plate (CPP) model and the electrostatic repulsive force (ERF) model are discussed for different applications. Although the CPP design provides a simple electrostatic approach to changing the interlayer distance of the BGNR, their switching gate bias V TH strongly depends on the gate area, which poses a limitation on the size of the device. In addition, there exists a risk of device failure due to static fraction between the mobile and fixed electrodes. In contrast, the ERF design can circumvent both issues with a more complex structure. Finally, optimizations of the devices are carried out in order to provide insights into the design considerations of these nanoelectromechanical switches.
doi_str_mv 10.1063/1.3606578
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3606578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-e3999485dd1339c61b2f0d2e99bcfd7b5620435a23272a880317eca95e2f6a0a3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKsH_8FePWydJJvd5CJItSoUvOg5zGYnbWS7W5K14L-37RY8eZrH8PHgfYzdcphxKOU9n8kSSlXpMzbhoE1eKQXnbAIgeK5NZS7ZVUpfAJxraSZs8UQprLqMdth-4xD6Lut9toq4XVNHWYddH0Nd79-HSC25IfYbcmvsgsM2a2gXHKVrduGxTXRzulP2uXj-mL_my_eXt_njMndCF0NO0hhTaNU0XErjSl4LD40gY2rnm6pWpYBCKhRSVAK1BskrcmgUCV8ioJyyu7HXxT6lSN5uY9hg_LEc7EGA5fYkYM8-jGxyYThO-x8eLdg_C7b38hcRq2Ny</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design evaluation of graphene nanoribbon nanoelectromechanical devices</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Lam, Kai-Tak ; Stephen Leo, Marie ; Lee, Chengkuo ; Liang, Gengchiau</creator><creatorcontrib>Lam, Kai-Tak ; Stephen Leo, Marie ; Lee, Chengkuo ; Liang, Gengchiau</creatorcontrib><description>Computational studies on nanoelectromechanical switches based on bilayer graphene nanoribbons (BGNRs) with different designs are presented in this work. By varying the interlayer distance via electrostatic means, the conductance of the BGNR can be changed in order to achieve ON-states and OFF-states, thereby mimicking the function of a switch. Two actuator designs based on the modified capacitive parallel plate (CPP) model and the electrostatic repulsive force (ERF) model are discussed for different applications. Although the CPP design provides a simple electrostatic approach to changing the interlayer distance of the BGNR, their switching gate bias V TH strongly depends on the gate area, which poses a limitation on the size of the device. In addition, there exists a risk of device failure due to static fraction between the mobile and fixed electrodes. In contrast, the ERF design can circumvent both issues with a more complex structure. Finally, optimizations of the devices are carried out in order to provide insights into the design considerations of these nanoelectromechanical switches.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3606578</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2011-07, Vol.110 (2), p.024302-024302-6</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-e3999485dd1339c61b2f0d2e99bcfd7b5620435a23272a880317eca95e2f6a0a3</citedby><cites>FETCH-LOGICAL-c284t-e3999485dd1339c61b2f0d2e99bcfd7b5620435a23272a880317eca95e2f6a0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3606578$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27901,27902,76127,76133</link.rule.ids></links><search><creatorcontrib>Lam, Kai-Tak</creatorcontrib><creatorcontrib>Stephen Leo, Marie</creatorcontrib><creatorcontrib>Lee, Chengkuo</creatorcontrib><creatorcontrib>Liang, Gengchiau</creatorcontrib><title>Design evaluation of graphene nanoribbon nanoelectromechanical devices</title><title>Journal of applied physics</title><description>Computational studies on nanoelectromechanical switches based on bilayer graphene nanoribbons (BGNRs) with different designs are presented in this work. By varying the interlayer distance via electrostatic means, the conductance of the BGNR can be changed in order to achieve ON-states and OFF-states, thereby mimicking the function of a switch. Two actuator designs based on the modified capacitive parallel plate (CPP) model and the electrostatic repulsive force (ERF) model are discussed for different applications. Although the CPP design provides a simple electrostatic approach to changing the interlayer distance of the BGNR, their switching gate bias V TH strongly depends on the gate area, which poses a limitation on the size of the device. In addition, there exists a risk of device failure due to static fraction between the mobile and fixed electrodes. In contrast, the ERF design can circumvent both issues with a more complex structure. Finally, optimizations of the devices are carried out in order to provide insights into the design considerations of these nanoelectromechanical switches.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKsH_8FePWydJJvd5CJItSoUvOg5zGYnbWS7W5K14L-37RY8eZrH8PHgfYzdcphxKOU9n8kSSlXpMzbhoE1eKQXnbAIgeK5NZS7ZVUpfAJxraSZs8UQprLqMdth-4xD6Lut9toq4XVNHWYddH0Nd79-HSC25IfYbcmvsgsM2a2gXHKVrduGxTXRzulP2uXj-mL_my_eXt_njMndCF0NO0hhTaNU0XErjSl4LD40gY2rnm6pWpYBCKhRSVAK1BskrcmgUCV8ioJyyu7HXxT6lSN5uY9hg_LEc7EGA5fYkYM8-jGxyYThO-x8eLdg_C7b38hcRq2Ny</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Lam, Kai-Tak</creator><creator>Stephen Leo, Marie</creator><creator>Lee, Chengkuo</creator><creator>Liang, Gengchiau</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110715</creationdate><title>Design evaluation of graphene nanoribbon nanoelectromechanical devices</title><author>Lam, Kai-Tak ; Stephen Leo, Marie ; Lee, Chengkuo ; Liang, Gengchiau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-e3999485dd1339c61b2f0d2e99bcfd7b5620435a23272a880317eca95e2f6a0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, Kai-Tak</creatorcontrib><creatorcontrib>Stephen Leo, Marie</creatorcontrib><creatorcontrib>Lee, Chengkuo</creatorcontrib><creatorcontrib>Liang, Gengchiau</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, Kai-Tak</au><au>Stephen Leo, Marie</au><au>Lee, Chengkuo</au><au>Liang, Gengchiau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design evaluation of graphene nanoribbon nanoelectromechanical devices</atitle><jtitle>Journal of applied physics</jtitle><date>2011-07-15</date><risdate>2011</risdate><volume>110</volume><issue>2</issue><spage>024302</spage><epage>024302-6</epage><pages>024302-024302-6</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Computational studies on nanoelectromechanical switches based on bilayer graphene nanoribbons (BGNRs) with different designs are presented in this work. By varying the interlayer distance via electrostatic means, the conductance of the BGNR can be changed in order to achieve ON-states and OFF-states, thereby mimicking the function of a switch. Two actuator designs based on the modified capacitive parallel plate (CPP) model and the electrostatic repulsive force (ERF) model are discussed for different applications. Although the CPP design provides a simple electrostatic approach to changing the interlayer distance of the BGNR, their switching gate bias V TH strongly depends on the gate area, which poses a limitation on the size of the device. In addition, there exists a risk of device failure due to static fraction between the mobile and fixed electrodes. In contrast, the ERF design can circumvent both issues with a more complex structure. Finally, optimizations of the devices are carried out in order to provide insights into the design considerations of these nanoelectromechanical switches.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3606578</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2011-07, Vol.110 (2), p.024302-024302-6
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_3606578
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Design evaluation of graphene nanoribbon nanoelectromechanical devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20evaluation%20of%20graphene%20nanoribbon%20nanoelectromechanical%20devices&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Lam,%20Kai-Tak&rft.date=2011-07-15&rft.volume=110&rft.issue=2&rft.spage=024302&rft.epage=024302-6&rft.pages=024302-024302-6&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3606578&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true