Raman study of strain relaxation in Ge on Si

Strain in thin Ge layers grown by molecular beam epitaxy on (100) Si is measured by a Raman technique. When the average Ge thickness is 7 monoatomic layers (ML), Raman results show that the layer is almost coherent to the Si lattice. The strain begins to decrease at an average thickness of 10 ML, i....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1995-05, Vol.77 (10), p.5144-5148
Hauptverfasser: Ichimura, Masaya, Usami, Akira, Wakahara, Akihiro, Sasaki, Akio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5148
container_issue 10
container_start_page 5144
container_title Journal of applied physics
container_volume 77
creator Ichimura, Masaya
Usami, Akira
Wakahara, Akihiro
Sasaki, Akio
description Strain in thin Ge layers grown by molecular beam epitaxy on (100) Si is measured by a Raman technique. When the average Ge thickness is 7 monoatomic layers (ML), Raman results show that the layer is almost coherent to the Si lattice. The strain begins to decrease at an average thickness of 10 ML, i.e., the critical thickness of dislocation generation is 10 ML. On the other hand, the relaxation begins at a thickness of 5 ML, according to reflection high-energy electron diffraction observation during the growth. This initial stage relaxation is due to deformation of islands and not due to dislocation formation. Raman results for thicker layers show that with increasing layer thickness, the misfit strain decreases gradually but more rapidly than predicted by the theory of Matthews and Blakeslee .
doi_str_mv 10.1063/1.359258
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_359258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_359258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-5793a5da8b89429d8c7968a9a41f5171275b2f8abbdc87fa0a4bf18b29d9d76c3</originalsourceid><addsrcrecordid>eNotj1FLwzAUhYMoWKfgT-ijD3bmJk1z76MMncJgMPW53CQNVLZWkgru31uZT-c7cDjwCXELcgmy0Q-w1IaUwTNRgESqrDHyXBRSKqiQLF2Kq5w_pQRATYW43_GBhzJP3-FYjnGGxP1Qpm7PPzz141DObd2VM7z11-Ii8j53N_-5EB_PT--rl2qzXb-uHjeVVw1NlbGk2QRGh1QrCugtNcjENUQDFpQ1TkVk54JHG1ly7SKgm6cUbOP1Qtydfn0ac05dbL9Sf-B0bEG2f5YttCdL_Qt3nEKy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Raman study of strain relaxation in Ge on Si</title><source>AIP Digital Archive</source><creator>Ichimura, Masaya ; Usami, Akira ; Wakahara, Akihiro ; Sasaki, Akio</creator><creatorcontrib>Ichimura, Masaya ; Usami, Akira ; Wakahara, Akihiro ; Sasaki, Akio</creatorcontrib><description>Strain in thin Ge layers grown by molecular beam epitaxy on (100) Si is measured by a Raman technique. When the average Ge thickness is 7 monoatomic layers (ML), Raman results show that the layer is almost coherent to the Si lattice. The strain begins to decrease at an average thickness of 10 ML, i.e., the critical thickness of dislocation generation is 10 ML. On the other hand, the relaxation begins at a thickness of 5 ML, according to reflection high-energy electron diffraction observation during the growth. This initial stage relaxation is due to deformation of islands and not due to dislocation formation. Raman results for thicker layers show that with increasing layer thickness, the misfit strain decreases gradually but more rapidly than predicted by the theory of Matthews and Blakeslee .</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.359258</identifier><language>eng</language><ispartof>Journal of applied physics, 1995-05, Vol.77 (10), p.5144-5148</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-5793a5da8b89429d8c7968a9a41f5171275b2f8abbdc87fa0a4bf18b29d9d76c3</citedby><cites>FETCH-LOGICAL-c269t-5793a5da8b89429d8c7968a9a41f5171275b2f8abbdc87fa0a4bf18b29d9d76c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ichimura, Masaya</creatorcontrib><creatorcontrib>Usami, Akira</creatorcontrib><creatorcontrib>Wakahara, Akihiro</creatorcontrib><creatorcontrib>Sasaki, Akio</creatorcontrib><title>Raman study of strain relaxation in Ge on Si</title><title>Journal of applied physics</title><description>Strain in thin Ge layers grown by molecular beam epitaxy on (100) Si is measured by a Raman technique. When the average Ge thickness is 7 monoatomic layers (ML), Raman results show that the layer is almost coherent to the Si lattice. The strain begins to decrease at an average thickness of 10 ML, i.e., the critical thickness of dislocation generation is 10 ML. On the other hand, the relaxation begins at a thickness of 5 ML, according to reflection high-energy electron diffraction observation during the growth. This initial stage relaxation is due to deformation of islands and not due to dislocation formation. Raman results for thicker layers show that with increasing layer thickness, the misfit strain decreases gradually but more rapidly than predicted by the theory of Matthews and Blakeslee .</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNotj1FLwzAUhYMoWKfgT-ijD3bmJk1z76MMncJgMPW53CQNVLZWkgru31uZT-c7cDjwCXELcgmy0Q-w1IaUwTNRgESqrDHyXBRSKqiQLF2Kq5w_pQRATYW43_GBhzJP3-FYjnGGxP1Qpm7PPzz141DObd2VM7z11-Ii8j53N_-5EB_PT--rl2qzXb-uHjeVVw1NlbGk2QRGh1QrCugtNcjENUQDFpQ1TkVk54JHG1ly7SKgm6cUbOP1Qtydfn0ac05dbL9Sf-B0bEG2f5YttCdL_Qt3nEKy</recordid><startdate>19950515</startdate><enddate>19950515</enddate><creator>Ichimura, Masaya</creator><creator>Usami, Akira</creator><creator>Wakahara, Akihiro</creator><creator>Sasaki, Akio</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950515</creationdate><title>Raman study of strain relaxation in Ge on Si</title><author>Ichimura, Masaya ; Usami, Akira ; Wakahara, Akihiro ; Sasaki, Akio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-5793a5da8b89429d8c7968a9a41f5171275b2f8abbdc87fa0a4bf18b29d9d76c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ichimura, Masaya</creatorcontrib><creatorcontrib>Usami, Akira</creatorcontrib><creatorcontrib>Wakahara, Akihiro</creatorcontrib><creatorcontrib>Sasaki, Akio</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ichimura, Masaya</au><au>Usami, Akira</au><au>Wakahara, Akihiro</au><au>Sasaki, Akio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman study of strain relaxation in Ge on Si</atitle><jtitle>Journal of applied physics</jtitle><date>1995-05-15</date><risdate>1995</risdate><volume>77</volume><issue>10</issue><spage>5144</spage><epage>5148</epage><pages>5144-5148</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Strain in thin Ge layers grown by molecular beam epitaxy on (100) Si is measured by a Raman technique. When the average Ge thickness is 7 monoatomic layers (ML), Raman results show that the layer is almost coherent to the Si lattice. The strain begins to decrease at an average thickness of 10 ML, i.e., the critical thickness of dislocation generation is 10 ML. On the other hand, the relaxation begins at a thickness of 5 ML, according to reflection high-energy electron diffraction observation during the growth. This initial stage relaxation is due to deformation of islands and not due to dislocation formation. Raman results for thicker layers show that with increasing layer thickness, the misfit strain decreases gradually but more rapidly than predicted by the theory of Matthews and Blakeslee .</abstract><doi>10.1063/1.359258</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1995-05, Vol.77 (10), p.5144-5148
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_359258
source AIP Digital Archive
title Raman study of strain relaxation in Ge on Si
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%20study%20of%20strain%20relaxation%20in%20Ge%20on%20Si&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Ichimura,%20Masaya&rft.date=1995-05-15&rft.volume=77&rft.issue=10&rft.spage=5144&rft.epage=5148&rft.pages=5144-5148&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.359258&rft_dat=%3Ccrossref%3E10_1063_1_359258%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true