Enhancement of light absorption using high- k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells
The application of high-dielectric-constant ( k ) materials, e.g., Si 3 N 4 , ZrO 2 , and HfO 2 , to localized surface plasmon resonance (LSPR) excited by a Au nanoparticle structure has been investigated and simulated for the enhancement of light absorption in Si-based thin film solar cells by usin...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2011-05, Vol.109 (9), p.093516-093516-8 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 093516-8 |
---|---|
container_issue | 9 |
container_start_page | 093516 |
container_title | Journal of applied physics |
container_volume | 109 |
creator | Li, Hua-Min Zhang, Gang Yang, Cheng Lee, Dae-Yeong Lim, Yeong-Dae Shen, Tian-Zi Yoo, Won Jong Park, Young Jun Kim, Hyunjin Nam Cha, Seung Kim, Jong Min |
description | The application of high-dielectric-constant (
k
) materials, e.g., Si
3
N
4
, ZrO
2
, and HfO
2
, to localized surface plasmon resonance (LSPR) excited by a Au nanoparticle structure has been investigated and simulated for the enhancement of light absorption in Si-based thin film solar cells by using Mie theory and three-dimensional finite-difference time-domain computational simulations. As compared to a conventional SiO
2
dielectric spacing layer, the high-
k
dielectrics have significant advantages, such as (i) a polarizability over two times higher, (ii) an extinction cross-section 4.1 times larger, (iii) a 5.6% higher transmission coefficient, (iv) a maximal 39.9% and average 25.0% increase in the transmission of the electromagnetic field, (v) an absorption of the transmitted electromagnetic field that is a maximum of 2.8 times and an average of 1.4 times greater, and (vi) increased absorption efficiency and extended cover range. Experimental results show that the average absorptance in the visible spectrum using high-
k
enhanced LSPR was maximally 31.1% higher than that using SiO
2
, demonstrating that the high-
k
dielectrics can be used as a potential spacing layer for light absorption in Au nanoparticle excited LSPR in Si-based thin film solar cells. |
doi_str_mv | 10.1063/1.3587165 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3587165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-f8809c220d855b555f1c3eada0396ff80ba261932ac1a7704ef2ceab7c1cc2cc3</originalsourceid><addsrcrecordid>eNp1kLtOwzAYhS0EEqUw8AZeGVJ8qRNnQUJVuUiVWGCO_vyxG4NrV3Y6wAvw2qS0AwvTkY6-c4aPkGvOZpyV8pbPpNIVL9UJmXCm66JSip2SCWOCF7qu6nNykfM7Y5xrWU_I9zL0ENBsTBhotNS7dT9QaHNM28HFQHfZhTXtx7qgH7RzxhsckkPqAvURwbsv09G8SxbQ0K2HvBlXyeQY9r_UxkSz8w5jKFrIIzv049Q6v6E5ekgUjff5kpxZ8NlcHXNK3h6Wr4unYvXy-Ly4XxUo9HworNasRiFYp5VqlVKWozTQAZN1aa1mLYiS11IAcqgqNjdWoIG2Qo4oEOWU3Bx-McWck7HNNrkNpM-Gs2ZvsOHN0eDI3h3YjG6AvY3_4T8am2ibX43yB5aRe_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancement of light absorption using high- k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Li, Hua-Min ; Zhang, Gang ; Yang, Cheng ; Lee, Dae-Yeong ; Lim, Yeong-Dae ; Shen, Tian-Zi ; Yoo, Won Jong ; Park, Young Jun ; Kim, Hyunjin ; Nam Cha, Seung ; Kim, Jong Min</creator><creatorcontrib>Li, Hua-Min ; Zhang, Gang ; Yang, Cheng ; Lee, Dae-Yeong ; Lim, Yeong-Dae ; Shen, Tian-Zi ; Yoo, Won Jong ; Park, Young Jun ; Kim, Hyunjin ; Nam Cha, Seung ; Kim, Jong Min</creatorcontrib><description>The application of high-dielectric-constant (
k
) materials, e.g., Si
3
N
4
, ZrO
2
, and HfO
2
, to localized surface plasmon resonance (LSPR) excited by a Au nanoparticle structure has been investigated and simulated for the enhancement of light absorption in Si-based thin film solar cells by using Mie theory and three-dimensional finite-difference time-domain computational simulations. As compared to a conventional SiO
2
dielectric spacing layer, the high-
k
dielectrics have significant advantages, such as (i) a polarizability over two times higher, (ii) an extinction cross-section 4.1 times larger, (iii) a 5.6% higher transmission coefficient, (iv) a maximal 39.9% and average 25.0% increase in the transmission of the electromagnetic field, (v) an absorption of the transmitted electromagnetic field that is a maximum of 2.8 times and an average of 1.4 times greater, and (vi) increased absorption efficiency and extended cover range. Experimental results show that the average absorptance in the visible spectrum using high-
k
enhanced LSPR was maximally 31.1% higher than that using SiO
2
, demonstrating that the high-
k
dielectrics can be used as a potential spacing layer for light absorption in Au nanoparticle excited LSPR in Si-based thin film solar cells.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3587165</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2011-05, Vol.109 (9), p.093516-093516-8</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-f8809c220d855b555f1c3eada0396ff80ba261932ac1a7704ef2ceab7c1cc2cc3</citedby><cites>FETCH-LOGICAL-c284t-f8809c220d855b555f1c3eada0396ff80ba261932ac1a7704ef2ceab7c1cc2cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3587165$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Li, Hua-Min</creatorcontrib><creatorcontrib>Zhang, Gang</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Lee, Dae-Yeong</creatorcontrib><creatorcontrib>Lim, Yeong-Dae</creatorcontrib><creatorcontrib>Shen, Tian-Zi</creatorcontrib><creatorcontrib>Yoo, Won Jong</creatorcontrib><creatorcontrib>Park, Young Jun</creatorcontrib><creatorcontrib>Kim, Hyunjin</creatorcontrib><creatorcontrib>Nam Cha, Seung</creatorcontrib><creatorcontrib>Kim, Jong Min</creatorcontrib><title>Enhancement of light absorption using high- k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells</title><title>Journal of applied physics</title><description>The application of high-dielectric-constant (
k
) materials, e.g., Si
3
N
4
, ZrO
2
, and HfO
2
, to localized surface plasmon resonance (LSPR) excited by a Au nanoparticle structure has been investigated and simulated for the enhancement of light absorption in Si-based thin film solar cells by using Mie theory and three-dimensional finite-difference time-domain computational simulations. As compared to a conventional SiO
2
dielectric spacing layer, the high-
k
dielectrics have significant advantages, such as (i) a polarizability over two times higher, (ii) an extinction cross-section 4.1 times larger, (iii) a 5.6% higher transmission coefficient, (iv) a maximal 39.9% and average 25.0% increase in the transmission of the electromagnetic field, (v) an absorption of the transmitted electromagnetic field that is a maximum of 2.8 times and an average of 1.4 times greater, and (vi) increased absorption efficiency and extended cover range. Experimental results show that the average absorptance in the visible spectrum using high-
k
enhanced LSPR was maximally 31.1% higher than that using SiO
2
, demonstrating that the high-
k
dielectrics can be used as a potential spacing layer for light absorption in Au nanoparticle excited LSPR in Si-based thin film solar cells.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAYhS0EEqUw8AZeGVJ8qRNnQUJVuUiVWGCO_vyxG4NrV3Y6wAvw2qS0AwvTkY6-c4aPkGvOZpyV8pbPpNIVL9UJmXCm66JSip2SCWOCF7qu6nNykfM7Y5xrWU_I9zL0ENBsTBhotNS7dT9QaHNM28HFQHfZhTXtx7qgH7RzxhsckkPqAvURwbsv09G8SxbQ0K2HvBlXyeQY9r_UxkSz8w5jKFrIIzv049Q6v6E5ekgUjff5kpxZ8NlcHXNK3h6Wr4unYvXy-Ly4XxUo9HworNasRiFYp5VqlVKWozTQAZN1aa1mLYiS11IAcqgqNjdWoIG2Qo4oEOWU3Bx-McWck7HNNrkNpM-Gs2ZvsOHN0eDI3h3YjG6AvY3_4T8am2ibX43yB5aRe_c</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Li, Hua-Min</creator><creator>Zhang, Gang</creator><creator>Yang, Cheng</creator><creator>Lee, Dae-Yeong</creator><creator>Lim, Yeong-Dae</creator><creator>Shen, Tian-Zi</creator><creator>Yoo, Won Jong</creator><creator>Park, Young Jun</creator><creator>Kim, Hyunjin</creator><creator>Nam Cha, Seung</creator><creator>Kim, Jong Min</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110501</creationdate><title>Enhancement of light absorption using high- k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells</title><author>Li, Hua-Min ; Zhang, Gang ; Yang, Cheng ; Lee, Dae-Yeong ; Lim, Yeong-Dae ; Shen, Tian-Zi ; Yoo, Won Jong ; Park, Young Jun ; Kim, Hyunjin ; Nam Cha, Seung ; Kim, Jong Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-f8809c220d855b555f1c3eada0396ff80ba261932ac1a7704ef2ceab7c1cc2cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hua-Min</creatorcontrib><creatorcontrib>Zhang, Gang</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Lee, Dae-Yeong</creatorcontrib><creatorcontrib>Lim, Yeong-Dae</creatorcontrib><creatorcontrib>Shen, Tian-Zi</creatorcontrib><creatorcontrib>Yoo, Won Jong</creatorcontrib><creatorcontrib>Park, Young Jun</creatorcontrib><creatorcontrib>Kim, Hyunjin</creatorcontrib><creatorcontrib>Nam Cha, Seung</creatorcontrib><creatorcontrib>Kim, Jong Min</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hua-Min</au><au>Zhang, Gang</au><au>Yang, Cheng</au><au>Lee, Dae-Yeong</au><au>Lim, Yeong-Dae</au><au>Shen, Tian-Zi</au><au>Yoo, Won Jong</au><au>Park, Young Jun</au><au>Kim, Hyunjin</au><au>Nam Cha, Seung</au><au>Kim, Jong Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of light absorption using high- k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells</atitle><jtitle>Journal of applied physics</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>109</volume><issue>9</issue><spage>093516</spage><epage>093516-8</epage><pages>093516-093516-8</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The application of high-dielectric-constant (
k
) materials, e.g., Si
3
N
4
, ZrO
2
, and HfO
2
, to localized surface plasmon resonance (LSPR) excited by a Au nanoparticle structure has been investigated and simulated for the enhancement of light absorption in Si-based thin film solar cells by using Mie theory and three-dimensional finite-difference time-domain computational simulations. As compared to a conventional SiO
2
dielectric spacing layer, the high-
k
dielectrics have significant advantages, such as (i) a polarizability over two times higher, (ii) an extinction cross-section 4.1 times larger, (iii) a 5.6% higher transmission coefficient, (iv) a maximal 39.9% and average 25.0% increase in the transmission of the electromagnetic field, (v) an absorption of the transmitted electromagnetic field that is a maximum of 2.8 times and an average of 1.4 times greater, and (vi) increased absorption efficiency and extended cover range. Experimental results show that the average absorptance in the visible spectrum using high-
k
enhanced LSPR was maximally 31.1% higher than that using SiO
2
, demonstrating that the high-
k
dielectrics can be used as a potential spacing layer for light absorption in Au nanoparticle excited LSPR in Si-based thin film solar cells.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3587165</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2011-05, Vol.109 (9), p.093516-093516-8 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3587165 |
source | American Institute of Physics (AIP) Journals; AIP Digital Archive; Alma/SFX Local Collection |
title | Enhancement of light absorption using high- k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20light%20absorption%20using%20high-%20k%20dielectric%20in%20localized%20surface%20plasmon%20resonance%20for%20silicon-based%20thin%20film%20solar%20cells&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Li,%20Hua-Min&rft.date=2011-05-01&rft.volume=109&rft.issue=9&rft.spage=093516&rft.epage=093516-8&rft.pages=093516-093516-8&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3587165&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |