Enhancement of light absorption using high- k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells

The application of high-dielectric-constant ( k ) materials, e.g., Si 3 N 4 , ZrO 2 , and HfO 2 , to localized surface plasmon resonance (LSPR) excited by a Au nanoparticle structure has been investigated and simulated for the enhancement of light absorption in Si-based thin film solar cells by usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2011-05, Vol.109 (9), p.093516-093516-8
Hauptverfasser: Li, Hua-Min, Zhang, Gang, Yang, Cheng, Lee, Dae-Yeong, Lim, Yeong-Dae, Shen, Tian-Zi, Yoo, Won Jong, Park, Young Jun, Kim, Hyunjin, Nam Cha, Seung, Kim, Jong Min
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 093516-8
container_issue 9
container_start_page 093516
container_title Journal of applied physics
container_volume 109
creator Li, Hua-Min
Zhang, Gang
Yang, Cheng
Lee, Dae-Yeong
Lim, Yeong-Dae
Shen, Tian-Zi
Yoo, Won Jong
Park, Young Jun
Kim, Hyunjin
Nam Cha, Seung
Kim, Jong Min
description The application of high-dielectric-constant ( k ) materials, e.g., Si 3 N 4 , ZrO 2 , and HfO 2 , to localized surface plasmon resonance (LSPR) excited by a Au nanoparticle structure has been investigated and simulated for the enhancement of light absorption in Si-based thin film solar cells by using Mie theory and three-dimensional finite-difference time-domain computational simulations. As compared to a conventional SiO 2 dielectric spacing layer, the high- k dielectrics have significant advantages, such as (i) a polarizability over two times higher, (ii) an extinction cross-section 4.1 times larger, (iii) a 5.6% higher transmission coefficient, (iv) a maximal 39.9% and average 25.0% increase in the transmission of the electromagnetic field, (v) an absorption of the transmitted electromagnetic field that is a maximum of 2.8 times and an average of 1.4 times greater, and (vi) increased absorption efficiency and extended cover range. Experimental results show that the average absorptance in the visible spectrum using high- k enhanced LSPR was maximally 31.1% higher than that using SiO 2 , demonstrating that the high- k dielectrics can be used as a potential spacing layer for light absorption in Au nanoparticle excited LSPR in Si-based thin film solar cells.
doi_str_mv 10.1063/1.3587165
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3587165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-f8809c220d855b555f1c3eada0396ff80ba261932ac1a7704ef2ceab7c1cc2cc3</originalsourceid><addsrcrecordid>eNp1kLtOwzAYhS0EEqUw8AZeGVJ8qRNnQUJVuUiVWGCO_vyxG4NrV3Y6wAvw2qS0AwvTkY6-c4aPkGvOZpyV8pbPpNIVL9UJmXCm66JSip2SCWOCF7qu6nNykfM7Y5xrWU_I9zL0ENBsTBhotNS7dT9QaHNM28HFQHfZhTXtx7qgH7RzxhsckkPqAvURwbsv09G8SxbQ0K2HvBlXyeQY9r_UxkSz8w5jKFrIIzv049Q6v6E5ekgUjff5kpxZ8NlcHXNK3h6Wr4unYvXy-Ly4XxUo9HworNasRiFYp5VqlVKWozTQAZN1aa1mLYiS11IAcqgqNjdWoIG2Qo4oEOWU3Bx-McWck7HNNrkNpM-Gs2ZvsOHN0eDI3h3YjG6AvY3_4T8am2ibX43yB5aRe_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancement of light absorption using high- k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Li, Hua-Min ; Zhang, Gang ; Yang, Cheng ; Lee, Dae-Yeong ; Lim, Yeong-Dae ; Shen, Tian-Zi ; Yoo, Won Jong ; Park, Young Jun ; Kim, Hyunjin ; Nam Cha, Seung ; Kim, Jong Min</creator><creatorcontrib>Li, Hua-Min ; Zhang, Gang ; Yang, Cheng ; Lee, Dae-Yeong ; Lim, Yeong-Dae ; Shen, Tian-Zi ; Yoo, Won Jong ; Park, Young Jun ; Kim, Hyunjin ; Nam Cha, Seung ; Kim, Jong Min</creatorcontrib><description>The application of high-dielectric-constant ( k ) materials, e.g., Si 3 N 4 , ZrO 2 , and HfO 2 , to localized surface plasmon resonance (LSPR) excited by a Au nanoparticle structure has been investigated and simulated for the enhancement of light absorption in Si-based thin film solar cells by using Mie theory and three-dimensional finite-difference time-domain computational simulations. As compared to a conventional SiO 2 dielectric spacing layer, the high- k dielectrics have significant advantages, such as (i) a polarizability over two times higher, (ii) an extinction cross-section 4.1 times larger, (iii) a 5.6% higher transmission coefficient, (iv) a maximal 39.9% and average 25.0% increase in the transmission of the electromagnetic field, (v) an absorption of the transmitted electromagnetic field that is a maximum of 2.8 times and an average of 1.4 times greater, and (vi) increased absorption efficiency and extended cover range. Experimental results show that the average absorptance in the visible spectrum using high- k enhanced LSPR was maximally 31.1% higher than that using SiO 2 , demonstrating that the high- k dielectrics can be used as a potential spacing layer for light absorption in Au nanoparticle excited LSPR in Si-based thin film solar cells.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3587165</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2011-05, Vol.109 (9), p.093516-093516-8</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-f8809c220d855b555f1c3eada0396ff80ba261932ac1a7704ef2ceab7c1cc2cc3</citedby><cites>FETCH-LOGICAL-c284t-f8809c220d855b555f1c3eada0396ff80ba261932ac1a7704ef2ceab7c1cc2cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3587165$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Li, Hua-Min</creatorcontrib><creatorcontrib>Zhang, Gang</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Lee, Dae-Yeong</creatorcontrib><creatorcontrib>Lim, Yeong-Dae</creatorcontrib><creatorcontrib>Shen, Tian-Zi</creatorcontrib><creatorcontrib>Yoo, Won Jong</creatorcontrib><creatorcontrib>Park, Young Jun</creatorcontrib><creatorcontrib>Kim, Hyunjin</creatorcontrib><creatorcontrib>Nam Cha, Seung</creatorcontrib><creatorcontrib>Kim, Jong Min</creatorcontrib><title>Enhancement of light absorption using high- k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells</title><title>Journal of applied physics</title><description>The application of high-dielectric-constant ( k ) materials, e.g., Si 3 N 4 , ZrO 2 , and HfO 2 , to localized surface plasmon resonance (LSPR) excited by a Au nanoparticle structure has been investigated and simulated for the enhancement of light absorption in Si-based thin film solar cells by using Mie theory and three-dimensional finite-difference time-domain computational simulations. As compared to a conventional SiO 2 dielectric spacing layer, the high- k dielectrics have significant advantages, such as (i) a polarizability over two times higher, (ii) an extinction cross-section 4.1 times larger, (iii) a 5.6% higher transmission coefficient, (iv) a maximal 39.9% and average 25.0% increase in the transmission of the electromagnetic field, (v) an absorption of the transmitted electromagnetic field that is a maximum of 2.8 times and an average of 1.4 times greater, and (vi) increased absorption efficiency and extended cover range. Experimental results show that the average absorptance in the visible spectrum using high- k enhanced LSPR was maximally 31.1% higher than that using SiO 2 , demonstrating that the high- k dielectrics can be used as a potential spacing layer for light absorption in Au nanoparticle excited LSPR in Si-based thin film solar cells.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAYhS0EEqUw8AZeGVJ8qRNnQUJVuUiVWGCO_vyxG4NrV3Y6wAvw2qS0AwvTkY6-c4aPkGvOZpyV8pbPpNIVL9UJmXCm66JSip2SCWOCF7qu6nNykfM7Y5xrWU_I9zL0ENBsTBhotNS7dT9QaHNM28HFQHfZhTXtx7qgH7RzxhsckkPqAvURwbsv09G8SxbQ0K2HvBlXyeQY9r_UxkSz8w5jKFrIIzv049Q6v6E5ekgUjff5kpxZ8NlcHXNK3h6Wr4unYvXy-Ly4XxUo9HworNasRiFYp5VqlVKWozTQAZN1aa1mLYiS11IAcqgqNjdWoIG2Qo4oEOWU3Bx-McWck7HNNrkNpM-Gs2ZvsOHN0eDI3h3YjG6AvY3_4T8am2ibX43yB5aRe_c</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Li, Hua-Min</creator><creator>Zhang, Gang</creator><creator>Yang, Cheng</creator><creator>Lee, Dae-Yeong</creator><creator>Lim, Yeong-Dae</creator><creator>Shen, Tian-Zi</creator><creator>Yoo, Won Jong</creator><creator>Park, Young Jun</creator><creator>Kim, Hyunjin</creator><creator>Nam Cha, Seung</creator><creator>Kim, Jong Min</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110501</creationdate><title>Enhancement of light absorption using high- k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells</title><author>Li, Hua-Min ; Zhang, Gang ; Yang, Cheng ; Lee, Dae-Yeong ; Lim, Yeong-Dae ; Shen, Tian-Zi ; Yoo, Won Jong ; Park, Young Jun ; Kim, Hyunjin ; Nam Cha, Seung ; Kim, Jong Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-f8809c220d855b555f1c3eada0396ff80ba261932ac1a7704ef2ceab7c1cc2cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hua-Min</creatorcontrib><creatorcontrib>Zhang, Gang</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>Lee, Dae-Yeong</creatorcontrib><creatorcontrib>Lim, Yeong-Dae</creatorcontrib><creatorcontrib>Shen, Tian-Zi</creatorcontrib><creatorcontrib>Yoo, Won Jong</creatorcontrib><creatorcontrib>Park, Young Jun</creatorcontrib><creatorcontrib>Kim, Hyunjin</creatorcontrib><creatorcontrib>Nam Cha, Seung</creatorcontrib><creatorcontrib>Kim, Jong Min</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hua-Min</au><au>Zhang, Gang</au><au>Yang, Cheng</au><au>Lee, Dae-Yeong</au><au>Lim, Yeong-Dae</au><au>Shen, Tian-Zi</au><au>Yoo, Won Jong</au><au>Park, Young Jun</au><au>Kim, Hyunjin</au><au>Nam Cha, Seung</au><au>Kim, Jong Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of light absorption using high- k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells</atitle><jtitle>Journal of applied physics</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>109</volume><issue>9</issue><spage>093516</spage><epage>093516-8</epage><pages>093516-093516-8</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The application of high-dielectric-constant ( k ) materials, e.g., Si 3 N 4 , ZrO 2 , and HfO 2 , to localized surface plasmon resonance (LSPR) excited by a Au nanoparticle structure has been investigated and simulated for the enhancement of light absorption in Si-based thin film solar cells by using Mie theory and three-dimensional finite-difference time-domain computational simulations. As compared to a conventional SiO 2 dielectric spacing layer, the high- k dielectrics have significant advantages, such as (i) a polarizability over two times higher, (ii) an extinction cross-section 4.1 times larger, (iii) a 5.6% higher transmission coefficient, (iv) a maximal 39.9% and average 25.0% increase in the transmission of the electromagnetic field, (v) an absorption of the transmitted electromagnetic field that is a maximum of 2.8 times and an average of 1.4 times greater, and (vi) increased absorption efficiency and extended cover range. Experimental results show that the average absorptance in the visible spectrum using high- k enhanced LSPR was maximally 31.1% higher than that using SiO 2 , demonstrating that the high- k dielectrics can be used as a potential spacing layer for light absorption in Au nanoparticle excited LSPR in Si-based thin film solar cells.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3587165</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2011-05, Vol.109 (9), p.093516-093516-8
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_3587165
source American Institute of Physics (AIP) Journals; AIP Digital Archive; Alma/SFX Local Collection
title Enhancement of light absorption using high- k dielectric in localized surface plasmon resonance for silicon-based thin film solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20light%20absorption%20using%20high-%20k%20dielectric%20in%20localized%20surface%20plasmon%20resonance%20for%20silicon-based%20thin%20film%20solar%20cells&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Li,%20Hua-Min&rft.date=2011-05-01&rft.volume=109&rft.issue=9&rft.spage=093516&rft.epage=093516-8&rft.pages=093516-093516-8&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3587165&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true