Near-field radiative transfer based thermal rectification using doped silicon

In this letter, we have designed a near-field thermal rectifier using a film and a bulk of doped silicon, with different doping levels, separated by a vacuum gap. We examine the origin of nonlinearities in thermal rectification associated with near-field heat transfer, and investigate closely the ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2011-03, Vol.98 (11), p.113106-113106-3
Hauptverfasser: Basu, Soumyadipta, Francoeur, Mathieu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113106-3
container_issue 11
container_start_page 113106
container_title Applied physics letters
container_volume 98
creator Basu, Soumyadipta
Francoeur, Mathieu
description In this letter, we have designed a near-field thermal rectifier using a film and a bulk of doped silicon, with different doping levels, separated by a vacuum gap. We examine the origin of nonlinearities in thermal rectification associated with near-field heat transfer, and investigate closely the effects of varying the vacuum gap and the film thickness on rectification. For a 10 nm thick film, rectification greater than 0.5 is achieved for vacuum gaps varying from 1 nm to 50 nm with the hot and cold temperatures of the terminals of the rectifier being 400 K and 300 K, respectively. The results obtained from this study may benefit future research in thermal management and energy harvesting.
doi_str_mv 10.1063/1.3567026
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3567026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-ead82c1cfd02af9f92bf460c0599074ab884a055f330a13882bf8aada60126e3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoWEcX_oNsXXS8aZo03Qgy6CiMupl9uM1DI512SKLgv7fzwJ2ry-F-HA4fIdcM5gwkv2VzLmQDlTwhBYOmKTlj6pQUAMBL2Qp2Ti5S-pyiqDgvyMurw1j64HpLI9qAOXw7miMOybtIO0zO0vzh4gZ7Gp3JwQczQeNAv1IY3qkdtxORQh_MOFySM499clfHOyPrx4f14qlcvS2fF_er0nABuXRoVWWY8RYq9K1vq87XEgyItoWmxk6pGkEIzzkg40pNf4VoUQKrpOMzcnOoNXFMKTqvtzFsMP5oBnqnQTN91DCxdwc2mZD3w_-Hdy703oX-c8F_AbUjZZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Near-field radiative transfer based thermal rectification using doped silicon</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Basu, Soumyadipta ; Francoeur, Mathieu</creator><creatorcontrib>Basu, Soumyadipta ; Francoeur, Mathieu</creatorcontrib><description>In this letter, we have designed a near-field thermal rectifier using a film and a bulk of doped silicon, with different doping levels, separated by a vacuum gap. We examine the origin of nonlinearities in thermal rectification associated with near-field heat transfer, and investigate closely the effects of varying the vacuum gap and the film thickness on rectification. For a 10 nm thick film, rectification greater than 0.5 is achieved for vacuum gaps varying from 1 nm to 50 nm with the hot and cold temperatures of the terminals of the rectifier being 400 K and 300 K, respectively. The results obtained from this study may benefit future research in thermal management and energy harvesting.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3567026</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2011-03, Vol.98 (11), p.113106-113106-3</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-ead82c1cfd02af9f92bf460c0599074ab884a055f330a13882bf8aada60126e3</citedby><cites>FETCH-LOGICAL-c350t-ead82c1cfd02af9f92bf460c0599074ab884a055f330a13882bf8aada60126e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3567026$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Basu, Soumyadipta</creatorcontrib><creatorcontrib>Francoeur, Mathieu</creatorcontrib><title>Near-field radiative transfer based thermal rectification using doped silicon</title><title>Applied physics letters</title><description>In this letter, we have designed a near-field thermal rectifier using a film and a bulk of doped silicon, with different doping levels, separated by a vacuum gap. We examine the origin of nonlinearities in thermal rectification associated with near-field heat transfer, and investigate closely the effects of varying the vacuum gap and the film thickness on rectification. For a 10 nm thick film, rectification greater than 0.5 is achieved for vacuum gaps varying from 1 nm to 50 nm with the hot and cold temperatures of the terminals of the rectifier being 400 K and 300 K, respectively. The results obtained from this study may benefit future research in thermal management and energy harvesting.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoWEcX_oNsXXS8aZo03Qgy6CiMupl9uM1DI512SKLgv7fzwJ2ry-F-HA4fIdcM5gwkv2VzLmQDlTwhBYOmKTlj6pQUAMBL2Qp2Ti5S-pyiqDgvyMurw1j64HpLI9qAOXw7miMOybtIO0zO0vzh4gZ7Gp3JwQczQeNAv1IY3qkdtxORQh_MOFySM499clfHOyPrx4f14qlcvS2fF_er0nABuXRoVWWY8RYq9K1vq87XEgyItoWmxk6pGkEIzzkg40pNf4VoUQKrpOMzcnOoNXFMKTqvtzFsMP5oBnqnQTN91DCxdwc2mZD3w_-Hdy703oX-c8F_AbUjZZU</recordid><startdate>20110314</startdate><enddate>20110314</enddate><creator>Basu, Soumyadipta</creator><creator>Francoeur, Mathieu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110314</creationdate><title>Near-field radiative transfer based thermal rectification using doped silicon</title><author>Basu, Soumyadipta ; Francoeur, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-ead82c1cfd02af9f92bf460c0599074ab884a055f330a13882bf8aada60126e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basu, Soumyadipta</creatorcontrib><creatorcontrib>Francoeur, Mathieu</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basu, Soumyadipta</au><au>Francoeur, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-field radiative transfer based thermal rectification using doped silicon</atitle><jtitle>Applied physics letters</jtitle><date>2011-03-14</date><risdate>2011</risdate><volume>98</volume><issue>11</issue><spage>113106</spage><epage>113106-3</epage><pages>113106-113106-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In this letter, we have designed a near-field thermal rectifier using a film and a bulk of doped silicon, with different doping levels, separated by a vacuum gap. We examine the origin of nonlinearities in thermal rectification associated with near-field heat transfer, and investigate closely the effects of varying the vacuum gap and the film thickness on rectification. For a 10 nm thick film, rectification greater than 0.5 is achieved for vacuum gaps varying from 1 nm to 50 nm with the hot and cold temperatures of the terminals of the rectifier being 400 K and 300 K, respectively. The results obtained from this study may benefit future research in thermal management and energy harvesting.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3567026</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2011-03, Vol.98 (11), p.113106-113106-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_3567026
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Near-field radiative transfer based thermal rectification using doped silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-field%20radiative%20transfer%20based%20thermal%20rectification%20using%20doped%20silicon&rft.jtitle=Applied%20physics%20letters&rft.au=Basu,%20Soumyadipta&rft.date=2011-03-14&rft.volume=98&rft.issue=11&rft.spage=113106&rft.epage=113106-3&rft.pages=113106-113106-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3567026&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true