Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film

Synthesis of microcrystalline-ultrananocrystalline composite diamond (MCD-UNCD) films, which exhibit marvelous electron field emission (EFE) properties, was reported. The EFE of MCD-UNCD composite diamond film can be turned on at a low field as 6.5   V / μ m and attain large EFE current density abou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2011-02, Vol.109 (3), p.033711-033711-8
Hauptverfasser: Cheng, Hsiu-Fung, Chiang, Horng-Yi, Horng, Chuang-Chi, Chen, Huang-Chin, Wang, Chuan-Sheng, Lin, I-Nan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 033711-8
container_issue 3
container_start_page 033711
container_title Journal of applied physics
container_volume 109
creator Cheng, Hsiu-Fung
Chiang, Horng-Yi
Horng, Chuang-Chi
Chen, Huang-Chin
Wang, Chuan-Sheng
Lin, I-Nan
description Synthesis of microcrystalline-ultrananocrystalline composite diamond (MCD-UNCD) films, which exhibit marvelous electron field emission (EFE) properties, was reported. The EFE of MCD-UNCD composite diamond film can be turned on at a low field as 6.5   V / μ m and attain large EFE current density about 1.0   m A / cm 2 at 30   V / μ m applied field, which is better than the EFE behavior of the nondoped planar diamond films ever reported. The MCD-UNCD films were grown by a two-step microwave plasma enhanced chemical vapor deposition (MPECVD) process, including forming an UNCD layer in CH 4 / Ar plasma that contains no extra H 2 , followed by growing MCD layer using CH 4 / H 2 / Ar plasma that contains large proportion of H 2 . Microstructure examinations using high resolution transmission electron microscopy shows that the secondary MPECVD process modifies the granular structure of the UNCD layer, instead of forming a large grain diamond layer on top of UNCD films. The MCD-UNCD composite diamond films consist of numerous ultrasmall grains ( ∼ 5   nm in size), surrounding large grains about hundreds of nanometer in size. Moreover, there exist abundant nanographites in the interfacial region between the grains that were presumed to form interconnected channels for electron transport, resulting in superior EFE properties for MCD-UNCD composite films.
doi_str_mv 10.1063/1.3544482
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3544482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-75175f0cf34f571d52bf3da2952ec7aceca013e0eb7771ae85fde0678f42c45e3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsL_yBbF1NfJpNmZiNIqVUouNF1SDMvNpLJlCSzmL93Stulq8eFw-W-Q8gjgwWDJX9mCy6qqqrLKzJjUDeFFAKuyQygZEXdyOaW3KX0C8BYzZsZ6dZhr4PBlqJHk2MfqHXop9i5lNwUD7E_YMwOE92NNA_BhR-a90g7Z2KfchxMHiLS3tLB56iDDr2JY8raexeQtk53fWinWt_dkxurfcKH852T77f11-q92H5uPlav28JwAXnazKSwYCyvrJCsFeXO8laXjSjRSG3QaGAcAXdSSqaxFrZFWMraVqWpBPI5eTr1HhemiFYdout0HBUDdfSkmDp7mtiXE5uMyzpPL_8PX2SpiyxlHf8DJbRzbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Cheng, Hsiu-Fung ; Chiang, Horng-Yi ; Horng, Chuang-Chi ; Chen, Huang-Chin ; Wang, Chuan-Sheng ; Lin, I-Nan</creator><creatorcontrib>Cheng, Hsiu-Fung ; Chiang, Horng-Yi ; Horng, Chuang-Chi ; Chen, Huang-Chin ; Wang, Chuan-Sheng ; Lin, I-Nan</creatorcontrib><description>Synthesis of microcrystalline-ultrananocrystalline composite diamond (MCD-UNCD) films, which exhibit marvelous electron field emission (EFE) properties, was reported. The EFE of MCD-UNCD composite diamond film can be turned on at a low field as 6.5   V / μ m and attain large EFE current density about 1.0   m A / cm 2 at 30   V / μ m applied field, which is better than the EFE behavior of the nondoped planar diamond films ever reported. The MCD-UNCD films were grown by a two-step microwave plasma enhanced chemical vapor deposition (MPECVD) process, including forming an UNCD layer in CH 4 / Ar plasma that contains no extra H 2 , followed by growing MCD layer using CH 4 / H 2 / Ar plasma that contains large proportion of H 2 . Microstructure examinations using high resolution transmission electron microscopy shows that the secondary MPECVD process modifies the granular structure of the UNCD layer, instead of forming a large grain diamond layer on top of UNCD films. The MCD-UNCD composite diamond films consist of numerous ultrasmall grains ( ∼ 5   nm in size), surrounding large grains about hundreds of nanometer in size. Moreover, there exist abundant nanographites in the interfacial region between the grains that were presumed to form interconnected channels for electron transport, resulting in superior EFE properties for MCD-UNCD composite films.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3544482</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2011-02, Vol.109 (3), p.033711-033711-8</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-75175f0cf34f571d52bf3da2952ec7aceca013e0eb7771ae85fde0678f42c45e3</citedby><cites>FETCH-LOGICAL-c350t-75175f0cf34f571d52bf3da2952ec7aceca013e0eb7771ae85fde0678f42c45e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3544482$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Cheng, Hsiu-Fung</creatorcontrib><creatorcontrib>Chiang, Horng-Yi</creatorcontrib><creatorcontrib>Horng, Chuang-Chi</creatorcontrib><creatorcontrib>Chen, Huang-Chin</creatorcontrib><creatorcontrib>Wang, Chuan-Sheng</creatorcontrib><creatorcontrib>Lin, I-Nan</creatorcontrib><title>Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film</title><title>Journal of applied physics</title><description>Synthesis of microcrystalline-ultrananocrystalline composite diamond (MCD-UNCD) films, which exhibit marvelous electron field emission (EFE) properties, was reported. The EFE of MCD-UNCD composite diamond film can be turned on at a low field as 6.5   V / μ m and attain large EFE current density about 1.0   m A / cm 2 at 30   V / μ m applied field, which is better than the EFE behavior of the nondoped planar diamond films ever reported. The MCD-UNCD films were grown by a two-step microwave plasma enhanced chemical vapor deposition (MPECVD) process, including forming an UNCD layer in CH 4 / Ar plasma that contains no extra H 2 , followed by growing MCD layer using CH 4 / H 2 / Ar plasma that contains large proportion of H 2 . Microstructure examinations using high resolution transmission electron microscopy shows that the secondary MPECVD process modifies the granular structure of the UNCD layer, instead of forming a large grain diamond layer on top of UNCD films. The MCD-UNCD composite diamond films consist of numerous ultrasmall grains ( ∼ 5   nm in size), surrounding large grains about hundreds of nanometer in size. Moreover, there exist abundant nanographites in the interfacial region between the grains that were presumed to form interconnected channels for electron transport, resulting in superior EFE properties for MCD-UNCD composite films.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWKsL_yBbF1NfJpNmZiNIqVUouNF1SDMvNpLJlCSzmL93Stulq8eFw-W-Q8gjgwWDJX9mCy6qqqrLKzJjUDeFFAKuyQygZEXdyOaW3KX0C8BYzZsZ6dZhr4PBlqJHk2MfqHXop9i5lNwUD7E_YMwOE92NNA_BhR-a90g7Z2KfchxMHiLS3tLB56iDDr2JY8raexeQtk53fWinWt_dkxurfcKH852T77f11-q92H5uPlav28JwAXnazKSwYCyvrJCsFeXO8laXjSjRSG3QaGAcAXdSSqaxFrZFWMraVqWpBPI5eTr1HhemiFYdout0HBUDdfSkmDp7mtiXE5uMyzpPL_8PX2SpiyxlHf8DJbRzbg</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Cheng, Hsiu-Fung</creator><creator>Chiang, Horng-Yi</creator><creator>Horng, Chuang-Chi</creator><creator>Chen, Huang-Chin</creator><creator>Wang, Chuan-Sheng</creator><creator>Lin, I-Nan</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110201</creationdate><title>Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film</title><author>Cheng, Hsiu-Fung ; Chiang, Horng-Yi ; Horng, Chuang-Chi ; Chen, Huang-Chin ; Wang, Chuan-Sheng ; Lin, I-Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-75175f0cf34f571d52bf3da2952ec7aceca013e0eb7771ae85fde0678f42c45e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Hsiu-Fung</creatorcontrib><creatorcontrib>Chiang, Horng-Yi</creatorcontrib><creatorcontrib>Horng, Chuang-Chi</creatorcontrib><creatorcontrib>Chen, Huang-Chin</creatorcontrib><creatorcontrib>Wang, Chuan-Sheng</creatorcontrib><creatorcontrib>Lin, I-Nan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Hsiu-Fung</au><au>Chiang, Horng-Yi</au><au>Horng, Chuang-Chi</au><au>Chen, Huang-Chin</au><au>Wang, Chuan-Sheng</au><au>Lin, I-Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film</atitle><jtitle>Journal of applied physics</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>109</volume><issue>3</issue><spage>033711</spage><epage>033711-8</epage><pages>033711-033711-8</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Synthesis of microcrystalline-ultrananocrystalline composite diamond (MCD-UNCD) films, which exhibit marvelous electron field emission (EFE) properties, was reported. The EFE of MCD-UNCD composite diamond film can be turned on at a low field as 6.5   V / μ m and attain large EFE current density about 1.0   m A / cm 2 at 30   V / μ m applied field, which is better than the EFE behavior of the nondoped planar diamond films ever reported. The MCD-UNCD films were grown by a two-step microwave plasma enhanced chemical vapor deposition (MPECVD) process, including forming an UNCD layer in CH 4 / Ar plasma that contains no extra H 2 , followed by growing MCD layer using CH 4 / H 2 / Ar plasma that contains large proportion of H 2 . Microstructure examinations using high resolution transmission electron microscopy shows that the secondary MPECVD process modifies the granular structure of the UNCD layer, instead of forming a large grain diamond layer on top of UNCD films. The MCD-UNCD composite diamond films consist of numerous ultrasmall grains ( ∼ 5   nm in size), surrounding large grains about hundreds of nanometer in size. Moreover, there exist abundant nanographites in the interfacial region between the grains that were presumed to form interconnected channels for electron transport, resulting in superior EFE properties for MCD-UNCD composite films.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3544482</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2011-02, Vol.109 (3), p.033711-033711-8
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_3544482
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20electron%20field%20emission%20properties%20by%20tuning%20the%20microstructure%20of%20ultrananocrystalline%20diamond%20film&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Cheng,%20Hsiu-Fung&rft.date=2011-02-01&rft.volume=109&rft.issue=3&rft.spage=033711&rft.epage=033711-8&rft.pages=033711-033711-8&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3544482&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true