The role of an ultrathin silicon interlayer at the SiO2-Ge interface

Recent studies [Hattangady et al., Appl. Phys. Lett. 57, 581 (1990)] have shown greatly reduced interface state densities (5×1010 cm−2 eV−1) in Ge-based, metal-insulator-semiconductor structures with the use of an ultrathin, pseudomorphic Si interlayer between the gate dielectric, SiO2, and the Ge s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1992-04, Vol.71 (8), p.3842-3852
Hauptverfasser: HATTANGADY, S. V, MANTINI, M. J, FOUTAIN, G. G, RUDDER, R. A, MARKUNAS, R. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3852
container_issue 8
container_start_page 3842
container_title Journal of applied physics
container_volume 71
creator HATTANGADY, S. V
MANTINI, M. J
FOUTAIN, G. G
RUDDER, R. A
MARKUNAS, R. J
description Recent studies [Hattangady et al., Appl. Phys. Lett. 57, 581 (1990)] have shown greatly reduced interface state densities (5×1010 cm−2 eV−1) in Ge-based, metal-insulator-semiconductor structures with the use of an ultrathin, pseudomorphic Si interlayer between the gate dielectric, SiO2, and the Ge semiconductor substrate. The Si and the SiO2 layers are deposited in situ and sequentially at low temperature (300 °C) in a remote-plasma-enhanced chemical-vapor-deposition system. This report presents an analysis of the Si-Ge heterostructure before and after the SiO2 deposition. Low-energy He ion scattering spectroscopy shows that the silicon layer (28 Å) provides complete coverage of the Ge surface prior to the deposition of the SiO2 film. The existence of the silicon interlayer after the remote-plasma-enhanced deposition of 150 Å of the SiO2 film is established by x-ray photoelectron spectroscopy (XPS). Throughout a cumulative series of thin (∼10 Å) oxide depositions, XPS showed no evidence of Ge oxidation states other than Ge0+ (elemental Ge) at the interface. Quantitative XPS has been used to evaluate the extent of subcutaneous oxidation which could determine the amount of Si remaining at the interface and thereby influence the electrical properties of the semiconductor-oxide interface. For the conditions studied, it is observed that oxidation consumes only 4 Å of the initial 28 Å of silicon. Furthermore, this is apparently due to the plasma oxidation of the silicon at the initiation of the remote oxygen plasma discharge. Subcutaneous oxidation is limited thereafter by the oxide film that forms a barrier to oxygen diffusion. In addition, the XPS analysis reveals several important characteristics of SiO2-Si interface formation with these plasma-deposited SiO2 dielectric films. Inversion-mode, p-channel Ge field-effect transistors fabricated with this composite SiO2-Si gate dielectric structure show a maximum room-temperature transconductance of 52 mS mm−1 at a gate length of 2 μm and a peak effective channel hole mobility of 430 cm2 V−1 s−1. These devices exhibit negligible charge-induced threshold shifts.
doi_str_mv 10.1063/1.350874
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_350874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>5298554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-54ef7810b789834f4b62d1485d772449bfc38581bb84c17f4d6bbf388f87b69a3</originalsourceid><addsrcrecordid>eNo9z8FLwzAYBfAgCtYp-Cfk4MFLZ74mab4cZeoUBjs4zyVJExap7UjiYf-9k4qnd3g_HjxCboEtgbX8AZZcMlTijFTAUNdKSnZOKsYaqFErfUmucv5kDAC5rsjTbu9pmgZPp0DNSL-HkkzZx5HmOEQ3jTSOxafBHH2iptBy4u9x29RrPzfBOH9NLoIZsr_5ywX5eHnerV7rzXb9tnrc1I43rNRS-KAQmFWokYsgbNv0IFD2SjVCaBscR4lgLQoHKoi-tTZwxIDKttrwBbmfd12ack4-dIcUv0w6dsC63_cddPP7E72b6cFkZ4aQzOhi_vey0Sil4D-BBldM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The role of an ultrathin silicon interlayer at the SiO2-Ge interface</title><source>AIP Digital Archive</source><creator>HATTANGADY, S. V ; MANTINI, M. J ; FOUTAIN, G. G ; RUDDER, R. A ; MARKUNAS, R. J</creator><creatorcontrib>HATTANGADY, S. V ; MANTINI, M. J ; FOUTAIN, G. G ; RUDDER, R. A ; MARKUNAS, R. J</creatorcontrib><description>Recent studies [Hattangady et al., Appl. Phys. Lett. 57, 581 (1990)] have shown greatly reduced interface state densities (5×1010 cm−2 eV−1) in Ge-based, metal-insulator-semiconductor structures with the use of an ultrathin, pseudomorphic Si interlayer between the gate dielectric, SiO2, and the Ge semiconductor substrate. The Si and the SiO2 layers are deposited in situ and sequentially at low temperature (300 °C) in a remote-plasma-enhanced chemical-vapor-deposition system. This report presents an analysis of the Si-Ge heterostructure before and after the SiO2 deposition. Low-energy He ion scattering spectroscopy shows that the silicon layer (28 Å) provides complete coverage of the Ge surface prior to the deposition of the SiO2 film. The existence of the silicon interlayer after the remote-plasma-enhanced deposition of 150 Å of the SiO2 film is established by x-ray photoelectron spectroscopy (XPS). Throughout a cumulative series of thin (∼10 Å) oxide depositions, XPS showed no evidence of Ge oxidation states other than Ge0+ (elemental Ge) at the interface. Quantitative XPS has been used to evaluate the extent of subcutaneous oxidation which could determine the amount of Si remaining at the interface and thereby influence the electrical properties of the semiconductor-oxide interface. For the conditions studied, it is observed that oxidation consumes only 4 Å of the initial 28 Å of silicon. Furthermore, this is apparently due to the plasma oxidation of the silicon at the initiation of the remote oxygen plasma discharge. Subcutaneous oxidation is limited thereafter by the oxide film that forms a barrier to oxygen diffusion. In addition, the XPS analysis reveals several important characteristics of SiO2-Si interface formation with these plasma-deposited SiO2 dielectric films. Inversion-mode, p-channel Ge field-effect transistors fabricated with this composite SiO2-Si gate dielectric structure show a maximum room-temperature transconductance of 52 mS mm−1 at a gate length of 2 μm and a peak effective channel hole mobility of 430 cm2 V−1 s−1. These devices exhibit negligible charge-induced threshold shifts.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.350874</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Journal of applied physics, 1992-04, Vol.71 (8), p.3842-3852</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-54ef7810b789834f4b62d1485d772449bfc38581bb84c17f4d6bbf388f87b69a3</citedby><cites>FETCH-LOGICAL-c320t-54ef7810b789834f4b62d1485d772449bfc38581bb84c17f4d6bbf388f87b69a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5298554$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HATTANGADY, S. V</creatorcontrib><creatorcontrib>MANTINI, M. J</creatorcontrib><creatorcontrib>FOUTAIN, G. G</creatorcontrib><creatorcontrib>RUDDER, R. A</creatorcontrib><creatorcontrib>MARKUNAS, R. J</creatorcontrib><title>The role of an ultrathin silicon interlayer at the SiO2-Ge interface</title><title>Journal of applied physics</title><description>Recent studies [Hattangady et al., Appl. Phys. Lett. 57, 581 (1990)] have shown greatly reduced interface state densities (5×1010 cm−2 eV−1) in Ge-based, metal-insulator-semiconductor structures with the use of an ultrathin, pseudomorphic Si interlayer between the gate dielectric, SiO2, and the Ge semiconductor substrate. The Si and the SiO2 layers are deposited in situ and sequentially at low temperature (300 °C) in a remote-plasma-enhanced chemical-vapor-deposition system. This report presents an analysis of the Si-Ge heterostructure before and after the SiO2 deposition. Low-energy He ion scattering spectroscopy shows that the silicon layer (28 Å) provides complete coverage of the Ge surface prior to the deposition of the SiO2 film. The existence of the silicon interlayer after the remote-plasma-enhanced deposition of 150 Å of the SiO2 film is established by x-ray photoelectron spectroscopy (XPS). Throughout a cumulative series of thin (∼10 Å) oxide depositions, XPS showed no evidence of Ge oxidation states other than Ge0+ (elemental Ge) at the interface. Quantitative XPS has been used to evaluate the extent of subcutaneous oxidation which could determine the amount of Si remaining at the interface and thereby influence the electrical properties of the semiconductor-oxide interface. For the conditions studied, it is observed that oxidation consumes only 4 Å of the initial 28 Å of silicon. Furthermore, this is apparently due to the plasma oxidation of the silicon at the initiation of the remote oxygen plasma discharge. Subcutaneous oxidation is limited thereafter by the oxide film that forms a barrier to oxygen diffusion. In addition, the XPS analysis reveals several important characteristics of SiO2-Si interface formation with these plasma-deposited SiO2 dielectric films. Inversion-mode, p-channel Ge field-effect transistors fabricated with this composite SiO2-Si gate dielectric structure show a maximum room-temperature transconductance of 52 mS mm−1 at a gate length of 2 μm and a peak effective channel hole mobility of 430 cm2 V−1 s−1. These devices exhibit negligible charge-induced threshold shifts.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNo9z8FLwzAYBfAgCtYp-Cfk4MFLZ74mab4cZeoUBjs4zyVJExap7UjiYf-9k4qnd3g_HjxCboEtgbX8AZZcMlTijFTAUNdKSnZOKsYaqFErfUmucv5kDAC5rsjTbu9pmgZPp0DNSL-HkkzZx5HmOEQ3jTSOxafBHH2iptBy4u9x29RrPzfBOH9NLoIZsr_5ywX5eHnerV7rzXb9tnrc1I43rNRS-KAQmFWokYsgbNv0IFD2SjVCaBscR4lgLQoHKoi-tTZwxIDKttrwBbmfd12ack4-dIcUv0w6dsC63_cddPP7E72b6cFkZ4aQzOhi_vey0Sil4D-BBldM</recordid><startdate>19920415</startdate><enddate>19920415</enddate><creator>HATTANGADY, S. V</creator><creator>MANTINI, M. J</creator><creator>FOUTAIN, G. G</creator><creator>RUDDER, R. A</creator><creator>MARKUNAS, R. J</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920415</creationdate><title>The role of an ultrathin silicon interlayer at the SiO2-Ge interface</title><author>HATTANGADY, S. V ; MANTINI, M. J ; FOUTAIN, G. G ; RUDDER, R. A ; MARKUNAS, R. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-54ef7810b789834f4b62d1485d772449bfc38581bb84c17f4d6bbf388f87b69a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HATTANGADY, S. V</creatorcontrib><creatorcontrib>MANTINI, M. J</creatorcontrib><creatorcontrib>FOUTAIN, G. G</creatorcontrib><creatorcontrib>RUDDER, R. A</creatorcontrib><creatorcontrib>MARKUNAS, R. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HATTANGADY, S. V</au><au>MANTINI, M. J</au><au>FOUTAIN, G. G</au><au>RUDDER, R. A</au><au>MARKUNAS, R. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of an ultrathin silicon interlayer at the SiO2-Ge interface</atitle><jtitle>Journal of applied physics</jtitle><date>1992-04-15</date><risdate>1992</risdate><volume>71</volume><issue>8</issue><spage>3842</spage><epage>3852</epage><pages>3842-3852</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Recent studies [Hattangady et al., Appl. Phys. Lett. 57, 581 (1990)] have shown greatly reduced interface state densities (5×1010 cm−2 eV−1) in Ge-based, metal-insulator-semiconductor structures with the use of an ultrathin, pseudomorphic Si interlayer between the gate dielectric, SiO2, and the Ge semiconductor substrate. The Si and the SiO2 layers are deposited in situ and sequentially at low temperature (300 °C) in a remote-plasma-enhanced chemical-vapor-deposition system. This report presents an analysis of the Si-Ge heterostructure before and after the SiO2 deposition. Low-energy He ion scattering spectroscopy shows that the silicon layer (28 Å) provides complete coverage of the Ge surface prior to the deposition of the SiO2 film. The existence of the silicon interlayer after the remote-plasma-enhanced deposition of 150 Å of the SiO2 film is established by x-ray photoelectron spectroscopy (XPS). Throughout a cumulative series of thin (∼10 Å) oxide depositions, XPS showed no evidence of Ge oxidation states other than Ge0+ (elemental Ge) at the interface. Quantitative XPS has been used to evaluate the extent of subcutaneous oxidation which could determine the amount of Si remaining at the interface and thereby influence the electrical properties of the semiconductor-oxide interface. For the conditions studied, it is observed that oxidation consumes only 4 Å of the initial 28 Å of silicon. Furthermore, this is apparently due to the plasma oxidation of the silicon at the initiation of the remote oxygen plasma discharge. Subcutaneous oxidation is limited thereafter by the oxide film that forms a barrier to oxygen diffusion. In addition, the XPS analysis reveals several important characteristics of SiO2-Si interface formation with these plasma-deposited SiO2 dielectric films. Inversion-mode, p-channel Ge field-effect transistors fabricated with this composite SiO2-Si gate dielectric structure show a maximum room-temperature transconductance of 52 mS mm−1 at a gate length of 2 μm and a peak effective channel hole mobility of 430 cm2 V−1 s−1. These devices exhibit negligible charge-induced threshold shifts.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.350874</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1992-04, Vol.71 (8), p.3842-3852
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_350874
source AIP Digital Archive
subjects Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Physics
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title The role of an ultrathin silicon interlayer at the SiO2-Ge interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20an%20ultrathin%20silicon%20interlayer%20at%20the%20SiO2-Ge%20interface&rft.jtitle=Journal%20of%20applied%20physics&rft.au=HATTANGADY,%20S.%20V&rft.date=1992-04-15&rft.volume=71&rft.issue=8&rft.spage=3842&rft.epage=3852&rft.pages=3842-3852&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.350874&rft_dat=%3Cpascalfrancis_cross%3E5298554%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true