Comprehensive analytical model for locally contacted rear surface passivated solar cells

For optimum performance of solar cells featuring a locally contacted rear surface, the metallization fraction as well as the size and distribution of the local contacts are crucial, since Ohmic and recombination losses have to be balanced. In this work we present a set of equations which enable to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2010-12, Vol.108 (12), p.124510-124510-13
Hauptverfasser: Wolf, Andreas, Biro, Daniel, Nekarda, Jan, Stumpp, Stefan, Kimmerle, Achim, Mack, Sebastian, Preu, Ralf
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124510-13
container_issue 12
container_start_page 124510
container_title Journal of applied physics
container_volume 108
creator Wolf, Andreas
Biro, Daniel
Nekarda, Jan
Stumpp, Stefan
Kimmerle, Achim
Mack, Sebastian
Preu, Ralf
description For optimum performance of solar cells featuring a locally contacted rear surface, the metallization fraction as well as the size and distribution of the local contacts are crucial, since Ohmic and recombination losses have to be balanced. In this work we present a set of equations which enable to calculate this trade off without the need of numerical simulations. Our model combines established analytical and empirical equations to predict the energy conversion efficiency of a locally contacted device. For experimental verification, we fabricate devices from float zone silicon wafers of different resistivity using the laser fired contact technology for forming the local rear contacts. The detailed characterization of test structures enables the determination of important physical parameters, such as the surface recombination velocity at the contacted area and the spreading resistance of the contacts. Our analytical model reproduces the experimental results very well and correctly predicts the optimum contact spacing without the use of free fitting parameters. We use our model to estimate the optimum bulk resistivity for locally contacted devices fabricated from conventional Czochralski-grown silicon material. These calculations use literature values for the stable minority carrier lifetime to account for the bulk recombination caused by the formation of boron-oxygen complexes under carrier injection.
doi_str_mv 10.1063/1.3506706
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3506706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-ac48e0de139219df64562f7f6bbeedba58707792683c1c7ef834a90eb01709d23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_0GuHrbObLrJ5iJI8QsKXhS8LbPZCa6km5KsQv-9W9qLB0_DzDzve3iEuEZYIGh1iwtVgTagT8QMobaFqSo4FTOAEovaGnsuLnL-AkCslZ2Jj1XcbBN_8pD7H5Y0UNiNvaMgN7HjIH1MMsRpDzvp4jCSG7mTiSnJ_J08OZZbylOW9vccw_RwHEK-FGeeQuar45yL98eHt9VzsX59elndrwunLI4FuWXN0DEqW6LtvF5WuvTG67Zl7lqqagPG2FLXyqEz7Gu1JAvcAhqwXanm4ubQ61LMObFvtqnfUNo1CM1eSYPNUcnE3h3Y7PqRxj4O_8N_vDQHL-oXxVtqig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comprehensive analytical model for locally contacted rear surface passivated solar cells</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Wolf, Andreas ; Biro, Daniel ; Nekarda, Jan ; Stumpp, Stefan ; Kimmerle, Achim ; Mack, Sebastian ; Preu, Ralf</creator><creatorcontrib>Wolf, Andreas ; Biro, Daniel ; Nekarda, Jan ; Stumpp, Stefan ; Kimmerle, Achim ; Mack, Sebastian ; Preu, Ralf</creatorcontrib><description>For optimum performance of solar cells featuring a locally contacted rear surface, the metallization fraction as well as the size and distribution of the local contacts are crucial, since Ohmic and recombination losses have to be balanced. In this work we present a set of equations which enable to calculate this trade off without the need of numerical simulations. Our model combines established analytical and empirical equations to predict the energy conversion efficiency of a locally contacted device. For experimental verification, we fabricate devices from float zone silicon wafers of different resistivity using the laser fired contact technology for forming the local rear contacts. The detailed characterization of test structures enables the determination of important physical parameters, such as the surface recombination velocity at the contacted area and the spreading resistance of the contacts. Our analytical model reproduces the experimental results very well and correctly predicts the optimum contact spacing without the use of free fitting parameters. We use our model to estimate the optimum bulk resistivity for locally contacted devices fabricated from conventional Czochralski-grown silicon material. These calculations use literature values for the stable minority carrier lifetime to account for the bulk recombination caused by the formation of boron-oxygen complexes under carrier injection.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3506706</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2010-12, Vol.108 (12), p.124510-124510-13</ispartof><rights>2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-ac48e0de139219df64562f7f6bbeedba58707792683c1c7ef834a90eb01709d23</citedby><cites>FETCH-LOGICAL-c391t-ac48e0de139219df64562f7f6bbeedba58707792683c1c7ef834a90eb01709d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3506706$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27903,27904,76130,76136</link.rule.ids></links><search><creatorcontrib>Wolf, Andreas</creatorcontrib><creatorcontrib>Biro, Daniel</creatorcontrib><creatorcontrib>Nekarda, Jan</creatorcontrib><creatorcontrib>Stumpp, Stefan</creatorcontrib><creatorcontrib>Kimmerle, Achim</creatorcontrib><creatorcontrib>Mack, Sebastian</creatorcontrib><creatorcontrib>Preu, Ralf</creatorcontrib><title>Comprehensive analytical model for locally contacted rear surface passivated solar cells</title><title>Journal of applied physics</title><description>For optimum performance of solar cells featuring a locally contacted rear surface, the metallization fraction as well as the size and distribution of the local contacts are crucial, since Ohmic and recombination losses have to be balanced. In this work we present a set of equations which enable to calculate this trade off without the need of numerical simulations. Our model combines established analytical and empirical equations to predict the energy conversion efficiency of a locally contacted device. For experimental verification, we fabricate devices from float zone silicon wafers of different resistivity using the laser fired contact technology for forming the local rear contacts. The detailed characterization of test structures enables the determination of important physical parameters, such as the surface recombination velocity at the contacted area and the spreading resistance of the contacts. Our analytical model reproduces the experimental results very well and correctly predicts the optimum contact spacing without the use of free fitting parameters. We use our model to estimate the optimum bulk resistivity for locally contacted devices fabricated from conventional Czochralski-grown silicon material. These calculations use literature values for the stable minority carrier lifetime to account for the bulk recombination caused by the formation of boron-oxygen complexes under carrier injection.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_0GuHrbObLrJ5iJI8QsKXhS8LbPZCa6km5KsQv-9W9qLB0_DzDzve3iEuEZYIGh1iwtVgTagT8QMobaFqSo4FTOAEovaGnsuLnL-AkCslZ2Jj1XcbBN_8pD7H5Y0UNiNvaMgN7HjIH1MMsRpDzvp4jCSG7mTiSnJ_J08OZZbylOW9vccw_RwHEK-FGeeQuar45yL98eHt9VzsX59elndrwunLI4FuWXN0DEqW6LtvF5WuvTG67Zl7lqqagPG2FLXyqEz7Gu1JAvcAhqwXanm4ubQ61LMObFvtqnfUNo1CM1eSYPNUcnE3h3Y7PqRxj4O_8N_vDQHL-oXxVtqig</recordid><startdate>20101215</startdate><enddate>20101215</enddate><creator>Wolf, Andreas</creator><creator>Biro, Daniel</creator><creator>Nekarda, Jan</creator><creator>Stumpp, Stefan</creator><creator>Kimmerle, Achim</creator><creator>Mack, Sebastian</creator><creator>Preu, Ralf</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20101215</creationdate><title>Comprehensive analytical model for locally contacted rear surface passivated solar cells</title><author>Wolf, Andreas ; Biro, Daniel ; Nekarda, Jan ; Stumpp, Stefan ; Kimmerle, Achim ; Mack, Sebastian ; Preu, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-ac48e0de139219df64562f7f6bbeedba58707792683c1c7ef834a90eb01709d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Andreas</creatorcontrib><creatorcontrib>Biro, Daniel</creatorcontrib><creatorcontrib>Nekarda, Jan</creatorcontrib><creatorcontrib>Stumpp, Stefan</creatorcontrib><creatorcontrib>Kimmerle, Achim</creatorcontrib><creatorcontrib>Mack, Sebastian</creatorcontrib><creatorcontrib>Preu, Ralf</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Andreas</au><au>Biro, Daniel</au><au>Nekarda, Jan</au><au>Stumpp, Stefan</au><au>Kimmerle, Achim</au><au>Mack, Sebastian</au><au>Preu, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive analytical model for locally contacted rear surface passivated solar cells</atitle><jtitle>Journal of applied physics</jtitle><date>2010-12-15</date><risdate>2010</risdate><volume>108</volume><issue>12</issue><spage>124510</spage><epage>124510-13</epage><pages>124510-124510-13</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>For optimum performance of solar cells featuring a locally contacted rear surface, the metallization fraction as well as the size and distribution of the local contacts are crucial, since Ohmic and recombination losses have to be balanced. In this work we present a set of equations which enable to calculate this trade off without the need of numerical simulations. Our model combines established analytical and empirical equations to predict the energy conversion efficiency of a locally contacted device. For experimental verification, we fabricate devices from float zone silicon wafers of different resistivity using the laser fired contact technology for forming the local rear contacts. The detailed characterization of test structures enables the determination of important physical parameters, such as the surface recombination velocity at the contacted area and the spreading resistance of the contacts. Our analytical model reproduces the experimental results very well and correctly predicts the optimum contact spacing without the use of free fitting parameters. We use our model to estimate the optimum bulk resistivity for locally contacted devices fabricated from conventional Czochralski-grown silicon material. These calculations use literature values for the stable minority carrier lifetime to account for the bulk recombination caused by the formation of boron-oxygen complexes under carrier injection.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3506706</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2010-12, Vol.108 (12), p.124510-124510-13
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_3506706
source American Institute of Physics (AIP) Journals; AIP Digital Archive; Alma/SFX Local Collection
title Comprehensive analytical model for locally contacted rear surface passivated solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20analytical%20model%20for%20locally%20contacted%20rear%20surface%20passivated%20solar%20cells&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Wolf,%20Andreas&rft.date=2010-12-15&rft.volume=108&rft.issue=12&rft.spage=124510&rft.epage=124510-13&rft.pages=124510-124510-13&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3506706&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true