WSi2 and CoSi2 as diffusion sources for shallow-junction formation in silicon

The redistribution of B and As ions implanted into thin layers of WSi2 and CoSi2 on poly- or monocrystalline Si and the outdiffusion into the Si substrate during furnace annealing (FA) and rapid thermal processing (RTP) were investigated by several analytical techniques. Shallow junctions (depth xj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1991-07, Vol.70 (2), p.708-719
Hauptverfasser: PROBST, V, SCHABER, H, MITWALSKY, A, KABZA, H, VAN DEN HOVE, L, MAEX, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 719
container_issue 2
container_start_page 708
container_title Journal of applied physics
container_volume 70
creator PROBST, V
SCHABER, H
MITWALSKY, A
KABZA, H
VAN DEN HOVE, L
MAEX, K
description The redistribution of B and As ions implanted into thin layers of WSi2 and CoSi2 on poly- or monocrystalline Si and the outdiffusion into the Si substrate during furnace annealing (FA) and rapid thermal processing (RTP) were investigated by several analytical techniques. Shallow junctions (depth xj < 100 nm) with interface concentrations Cint close to the solid solubility of the respective dopant in Si (Cint≳3×1020 cm−3 for As; (Cint ≳ 8 × 1019 cm−3 for B) were obtained with RTP. For FA above 800 °C, the diffusion of B from CoSi2 into Si results in a drop of Cint < 2 × 1019 cm−3 because of strong B segregation and probably reactive loss at the SiO2/CoSi2 interface. No evidence on metal-dopant-compound formation could be found. The dopant redistribution is demonstrated to be a superposition of lattice and grain-boundary diffusion, solubility limits, layer inhomogeneities, dopant segregation at the interface and grain boundaries, and probably phase transformation of the dopants segregated at the SiO2/silicide interface. Electrical results such as, e.g., CoSi2 diode leakage currents (≊1 nA/ cm2) and contact resistances ( 2–5 × 10−7 Ω cm2 for RTP) clearly show that the formation of shallow silicided junctions by diffusion from an implanted silicide is a highly useful technological approach.
doi_str_mv 10.1063/1.349626
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_349626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4940808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-9112839ddaa3e3402f740297107bd1f9578a4513ae81a12b24a5bb5c8927f2463</originalsourceid><addsrcrecordid>eNo9kEFLxDAQhYMoWFfBn9CDBy9dZ5K0SY6y6CqseFDxWKZpg1m6zZJsEf-93V3xMu8x8zEPHmPXCHOEStzhXEhT8eqEZQjaFKos4ZRlABwLbZQ5ZxcprQEQtTAZe_l88zynoc0X4eBS3nrnxuTDkKcwRtul3IWYpy_q-_BdrMfB7vbHabmhg_MT6Xtvw3DJzhz1qbv60xn7eHx4XzwVq9fl8-J-VVjBYVcYRD6lty2R6IQE7tQ0jEJQTYvOlEqTLFFQp5GQN1xS2TSl1YYrx2UlZuz2-NfGkFLsXL2NfkPxp0ao9zXUWB9rmNCbI7qlZKl3kQbr0z8vjQQNWvwCQDJagg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>WSi2 and CoSi2 as diffusion sources for shallow-junction formation in silicon</title><source>AIP Digital Archive</source><creator>PROBST, V ; SCHABER, H ; MITWALSKY, A ; KABZA, H ; VAN DEN HOVE, L ; MAEX, K</creator><creatorcontrib>PROBST, V ; SCHABER, H ; MITWALSKY, A ; KABZA, H ; VAN DEN HOVE, L ; MAEX, K</creatorcontrib><description>The redistribution of B and As ions implanted into thin layers of WSi2 and CoSi2 on poly- or monocrystalline Si and the outdiffusion into the Si substrate during furnace annealing (FA) and rapid thermal processing (RTP) were investigated by several analytical techniques. Shallow junctions (depth xj &lt; 100 nm) with interface concentrations Cint close to the solid solubility of the respective dopant in Si (Cint≳3×1020 cm−3 for As; (Cint ≳ 8 × 1019 cm−3 for B) were obtained with RTP. For FA above 800 °C, the diffusion of B from CoSi2 into Si results in a drop of Cint &lt; 2 × 1019 cm−3 because of strong B segregation and probably reactive loss at the SiO2/CoSi2 interface. No evidence on metal-dopant-compound formation could be found. The dopant redistribution is demonstrated to be a superposition of lattice and grain-boundary diffusion, solubility limits, layer inhomogeneities, dopant segregation at the interface and grain boundaries, and probably phase transformation of the dopants segregated at the SiO2/silicide interface. Electrical results such as, e.g., CoSi2 diode leakage currents (≊1 nA/ cm2) and contact resistances ( 2–5 × 10−7 Ω cm2 for RTP) clearly show that the formation of shallow silicided junctions by diffusion from an implanted silicide is a highly useful technological approach.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.349626</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Diffusion in solids ; Diffusion of impurities ; Exact sciences and technology ; Physics ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Journal of applied physics, 1991-07, Vol.70 (2), p.708-719</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-9112839ddaa3e3402f740297107bd1f9578a4513ae81a12b24a5bb5c8927f2463</citedby><cites>FETCH-LOGICAL-c320t-9112839ddaa3e3402f740297107bd1f9578a4513ae81a12b24a5bb5c8927f2463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4940808$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PROBST, V</creatorcontrib><creatorcontrib>SCHABER, H</creatorcontrib><creatorcontrib>MITWALSKY, A</creatorcontrib><creatorcontrib>KABZA, H</creatorcontrib><creatorcontrib>VAN DEN HOVE, L</creatorcontrib><creatorcontrib>MAEX, K</creatorcontrib><title>WSi2 and CoSi2 as diffusion sources for shallow-junction formation in silicon</title><title>Journal of applied physics</title><description>The redistribution of B and As ions implanted into thin layers of WSi2 and CoSi2 on poly- or monocrystalline Si and the outdiffusion into the Si substrate during furnace annealing (FA) and rapid thermal processing (RTP) were investigated by several analytical techniques. Shallow junctions (depth xj &lt; 100 nm) with interface concentrations Cint close to the solid solubility of the respective dopant in Si (Cint≳3×1020 cm−3 for As; (Cint ≳ 8 × 1019 cm−3 for B) were obtained with RTP. For FA above 800 °C, the diffusion of B from CoSi2 into Si results in a drop of Cint &lt; 2 × 1019 cm−3 because of strong B segregation and probably reactive loss at the SiO2/CoSi2 interface. No evidence on metal-dopant-compound formation could be found. The dopant redistribution is demonstrated to be a superposition of lattice and grain-boundary diffusion, solubility limits, layer inhomogeneities, dopant segregation at the interface and grain boundaries, and probably phase transformation of the dopants segregated at the SiO2/silicide interface. Electrical results such as, e.g., CoSi2 diode leakage currents (≊1 nA/ cm2) and contact resistances ( 2–5 × 10−7 Ω cm2 for RTP) clearly show that the formation of shallow silicided junctions by diffusion from an implanted silicide is a highly useful technological approach.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Diffusion in solids</subject><subject>Diffusion of impurities</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAQhYMoWFfBn9CDBy9dZ5K0SY6y6CqseFDxWKZpg1m6zZJsEf-93V3xMu8x8zEPHmPXCHOEStzhXEhT8eqEZQjaFKos4ZRlABwLbZQ5ZxcprQEQtTAZe_l88zynoc0X4eBS3nrnxuTDkKcwRtul3IWYpy_q-_BdrMfB7vbHabmhg_MT6Xtvw3DJzhz1qbv60xn7eHx4XzwVq9fl8-J-VVjBYVcYRD6lty2R6IQE7tQ0jEJQTYvOlEqTLFFQp5GQN1xS2TSl1YYrx2UlZuz2-NfGkFLsXL2NfkPxp0ao9zXUWB9rmNCbI7qlZKl3kQbr0z8vjQQNWvwCQDJagg</recordid><startdate>19910715</startdate><enddate>19910715</enddate><creator>PROBST, V</creator><creator>SCHABER, H</creator><creator>MITWALSKY, A</creator><creator>KABZA, H</creator><creator>VAN DEN HOVE, L</creator><creator>MAEX, K</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19910715</creationdate><title>WSi2 and CoSi2 as diffusion sources for shallow-junction formation in silicon</title><author>PROBST, V ; SCHABER, H ; MITWALSKY, A ; KABZA, H ; VAN DEN HOVE, L ; MAEX, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-9112839ddaa3e3402f740297107bd1f9578a4513ae81a12b24a5bb5c8927f2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Diffusion in solids</topic><topic>Diffusion of impurities</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PROBST, V</creatorcontrib><creatorcontrib>SCHABER, H</creatorcontrib><creatorcontrib>MITWALSKY, A</creatorcontrib><creatorcontrib>KABZA, H</creatorcontrib><creatorcontrib>VAN DEN HOVE, L</creatorcontrib><creatorcontrib>MAEX, K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PROBST, V</au><au>SCHABER, H</au><au>MITWALSKY, A</au><au>KABZA, H</au><au>VAN DEN HOVE, L</au><au>MAEX, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WSi2 and CoSi2 as diffusion sources for shallow-junction formation in silicon</atitle><jtitle>Journal of applied physics</jtitle><date>1991-07-15</date><risdate>1991</risdate><volume>70</volume><issue>2</issue><spage>708</spage><epage>719</epage><pages>708-719</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The redistribution of B and As ions implanted into thin layers of WSi2 and CoSi2 on poly- or monocrystalline Si and the outdiffusion into the Si substrate during furnace annealing (FA) and rapid thermal processing (RTP) were investigated by several analytical techniques. Shallow junctions (depth xj &lt; 100 nm) with interface concentrations Cint close to the solid solubility of the respective dopant in Si (Cint≳3×1020 cm−3 for As; (Cint ≳ 8 × 1019 cm−3 for B) were obtained with RTP. For FA above 800 °C, the diffusion of B from CoSi2 into Si results in a drop of Cint &lt; 2 × 1019 cm−3 because of strong B segregation and probably reactive loss at the SiO2/CoSi2 interface. No evidence on metal-dopant-compound formation could be found. The dopant redistribution is demonstrated to be a superposition of lattice and grain-boundary diffusion, solubility limits, layer inhomogeneities, dopant segregation at the interface and grain boundaries, and probably phase transformation of the dopants segregated at the SiO2/silicide interface. Electrical results such as, e.g., CoSi2 diode leakage currents (≊1 nA/ cm2) and contact resistances ( 2–5 × 10−7 Ω cm2 for RTP) clearly show that the formation of shallow silicided junctions by diffusion from an implanted silicide is a highly useful technological approach.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.349626</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1991-07, Vol.70 (2), p.708-719
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_349626
source AIP Digital Archive
subjects Condensed matter: structure, mechanical and thermal properties
Diffusion in solids
Diffusion of impurities
Exact sciences and technology
Physics
Transport properties of condensed matter (nonelectronic)
title WSi2 and CoSi2 as diffusion sources for shallow-junction formation in silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WSi2%20and%20CoSi2%20as%20diffusion%20sources%20for%20shallow-junction%20formation%20in%20silicon&rft.jtitle=Journal%20of%20applied%20physics&rft.au=PROBST,%20V&rft.date=1991-07-15&rft.volume=70&rft.issue=2&rft.spage=708&rft.epage=719&rft.pages=708-719&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.349626&rft_dat=%3Cpascalfrancis_cross%3E4940808%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true