Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices

In this paper, we report on gold nanoparticle (GNP) doped silk films as an implantable and degradable heating element activated by light, which can be potentially used for wireless powering of implanted microdevices. Proof-of-concept experiments have been conducted by casting a GNP doped silk film o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2010-09, Vol.97 (12), p.123702-123702-3
Hauptverfasser: Tao, Hu, Siebert, Sean M., Brenckle, Mark A., Averitt, Richard D., Cronin-Golomb, Mark, Kaplan, David L., Omenetto, Fiorenzo G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123702-3
container_issue 12
container_start_page 123702
container_title Applied physics letters
container_volume 97
creator Tao, Hu
Siebert, Sean M.
Brenckle, Mark A.
Averitt, Richard D.
Cronin-Golomb, Mark
Kaplan, David L.
Omenetto, Fiorenzo G.
description In this paper, we report on gold nanoparticle (GNP) doped silk films as an implantable and degradable heating element activated by light, which can be potentially used for wireless powering of implanted microdevices. Proof-of-concept experiments have been conducted by casting a GNP doped silk film on a miniature thermal-power chip, which generates ∼ 20   mW when illuminated by a green laser with an output power of 450   mW / mm 2 at 532 nm.
doi_str_mv 10.1063/1.3486157
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3486157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-34e079d47b79ac54322550bc6071dcf6a7550bf27c5a023b29c1507c1ff089bb3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKsL_0G2LlLzMZnMbAQpWoWCG10P-bTRzGRIgqX_3hnahRvhweNeDg_eAeCW4BXBNbsnK1Y1NeHiDCwIFgIxQppzsMAYM1S3nFyCq5y_psgpYwuw38Rg4CCHOMpUvA4WmThaA5WPOvajLF4FC7MP39D50Gcop4FTv4MlQt-PQQ5FzkzZ2dRHZIPVJXktQzjAvU9TzhmOcW-THz6hsT9e23wNLpwM2d6c9hJ8PD-9r1_Q9m3zun7cIk2bqiBWWSxaUwklWql5xSjlHCtdY0GMdrUUc3RUaC4xZYq2mnAsNHEON61SbAnujnd1ijkn67ox-V6mQ0dwNxvrSHcyNrEPRzZrX6bH4_A_PGvr_mrrTGS__K91kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Tao, Hu ; Siebert, Sean M. ; Brenckle, Mark A. ; Averitt, Richard D. ; Cronin-Golomb, Mark ; Kaplan, David L. ; Omenetto, Fiorenzo G.</creator><creatorcontrib>Tao, Hu ; Siebert, Sean M. ; Brenckle, Mark A. ; Averitt, Richard D. ; Cronin-Golomb, Mark ; Kaplan, David L. ; Omenetto, Fiorenzo G.</creatorcontrib><description>In this paper, we report on gold nanoparticle (GNP) doped silk films as an implantable and degradable heating element activated by light, which can be potentially used for wireless powering of implanted microdevices. Proof-of-concept experiments have been conducted by casting a GNP doped silk film on a miniature thermal-power chip, which generates ∼ 20   mW when illuminated by a green laser with an output power of 450   mW / mm 2 at 532 nm.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3486157</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2010-09, Vol.97 (12), p.123702-123702-3</ispartof><rights>2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-34e079d47b79ac54322550bc6071dcf6a7550bf27c5a023b29c1507c1ff089bb3</citedby><cites>FETCH-LOGICAL-c284t-34e079d47b79ac54322550bc6071dcf6a7550bf27c5a023b29c1507c1ff089bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3486157$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Tao, Hu</creatorcontrib><creatorcontrib>Siebert, Sean M.</creatorcontrib><creatorcontrib>Brenckle, Mark A.</creatorcontrib><creatorcontrib>Averitt, Richard D.</creatorcontrib><creatorcontrib>Cronin-Golomb, Mark</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><creatorcontrib>Omenetto, Fiorenzo G.</creatorcontrib><title>Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices</title><title>Applied physics letters</title><description>In this paper, we report on gold nanoparticle (GNP) doped silk films as an implantable and degradable heating element activated by light, which can be potentially used for wireless powering of implanted microdevices. Proof-of-concept experiments have been conducted by casting a GNP doped silk film on a miniature thermal-power chip, which generates ∼ 20   mW when illuminated by a green laser with an output power of 450   mW / mm 2 at 532 nm.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKsL_0G2LlLzMZnMbAQpWoWCG10P-bTRzGRIgqX_3hnahRvhweNeDg_eAeCW4BXBNbsnK1Y1NeHiDCwIFgIxQppzsMAYM1S3nFyCq5y_psgpYwuw38Rg4CCHOMpUvA4WmThaA5WPOvajLF4FC7MP39D50Gcop4FTv4MlQt-PQQ5FzkzZ2dRHZIPVJXktQzjAvU9TzhmOcW-THz6hsT9e23wNLpwM2d6c9hJ8PD-9r1_Q9m3zun7cIk2bqiBWWSxaUwklWql5xSjlHCtdY0GMdrUUc3RUaC4xZYq2mnAsNHEON61SbAnujnd1ijkn67ox-V6mQ0dwNxvrSHcyNrEPRzZrX6bH4_A_PGvr_mrrTGS__K91kg</recordid><startdate>20100920</startdate><enddate>20100920</enddate><creator>Tao, Hu</creator><creator>Siebert, Sean M.</creator><creator>Brenckle, Mark A.</creator><creator>Averitt, Richard D.</creator><creator>Cronin-Golomb, Mark</creator><creator>Kaplan, David L.</creator><creator>Omenetto, Fiorenzo G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100920</creationdate><title>Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices</title><author>Tao, Hu ; Siebert, Sean M. ; Brenckle, Mark A. ; Averitt, Richard D. ; Cronin-Golomb, Mark ; Kaplan, David L. ; Omenetto, Fiorenzo G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-34e079d47b79ac54322550bc6071dcf6a7550bf27c5a023b29c1507c1ff089bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Hu</creatorcontrib><creatorcontrib>Siebert, Sean M.</creatorcontrib><creatorcontrib>Brenckle, Mark A.</creatorcontrib><creatorcontrib>Averitt, Richard D.</creatorcontrib><creatorcontrib>Cronin-Golomb, Mark</creatorcontrib><creatorcontrib>Kaplan, David L.</creatorcontrib><creatorcontrib>Omenetto, Fiorenzo G.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Hu</au><au>Siebert, Sean M.</au><au>Brenckle, Mark A.</au><au>Averitt, Richard D.</au><au>Cronin-Golomb, Mark</au><au>Kaplan, David L.</au><au>Omenetto, Fiorenzo G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices</atitle><jtitle>Applied physics letters</jtitle><date>2010-09-20</date><risdate>2010</risdate><volume>97</volume><issue>12</issue><spage>123702</spage><epage>123702-3</epage><pages>123702-123702-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In this paper, we report on gold nanoparticle (GNP) doped silk films as an implantable and degradable heating element activated by light, which can be potentially used for wireless powering of implanted microdevices. Proof-of-concept experiments have been conducted by casting a GNP doped silk film on a miniature thermal-power chip, which generates ∼ 20   mW when illuminated by a green laser with an output power of 450   mW / mm 2 at 532 nm.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3486157</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2010-09, Vol.97 (12), p.123702-123702-3
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_3486157
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold%20nanoparticle-doped%20biocompatible%20silk%20films%20as%20a%20path%20to%20implantable%20thermo-electrically%20wireless%20powering%20devices&rft.jtitle=Applied%20physics%20letters&rft.au=Tao,%20Hu&rft.date=2010-09-20&rft.volume=97&rft.issue=12&rft.spage=123702&rft.epage=123702-3&rft.pages=123702-123702-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3486157&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true