A general figure of merit for thick and thin transparent conductive carbon nanotube coatings
We suggest a wavelength-dependent figure of merit for transparent conducting nanotube networks, composed of the sheet resistance and the optical density. We argue that this would be more useful than other suggestions prevailing in the literature because it relies on more realistic assumptions regard...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2010-09, Vol.108 (5), p.054318-054318-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We suggest a wavelength-dependent figure of merit for transparent conducting nanotube networks, composed of the sheet resistance and the optical density. We argue that this would be more useful than other suggestions prevailing in the literature because it relies on more realistic assumptions regarding the optical parameters of real nanotubes: it takes into account the fact that the dc resistivity depends on the concentration of free carriers, while the visible absorption is caused by bound carriers. Based on sheet resistance measurements and wide-range transmission spectra, we compare several commercial nanotube types and find correlation between metal enrichment and figure of merit. A simple graphical approach is suggested to determine if the required optical and transport properties can be achieved by varying the thickness of the nanotube layer or a more aggressive treatment is needed. The procedure can be extended to oxide coatings as well. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3476278 |