Positioning and stretching of actin filaments by electric fields
The alignment of biological filaments on surfaces offers a high potential for controllable geometries in lab-on-a-chip-structures and micrototal analysis systems. Actin is a polar filamentous protein with a diameter of 7-8 nm that can be manipulated with strong electric fields. It is demonstrated th...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2010-06, Vol.96 (24), p.243703-243703-3 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The alignment of biological filaments on surfaces offers a high potential for controllable geometries in lab-on-a-chip-structures and micrototal analysis systems. Actin is a polar filamentous protein with a diameter of 7-8 nm that can be manipulated with strong electric fields. It is demonstrated that with the use of microelectrodes or nanoelectrodes and electric fields of 20 kV/m single actin filaments can be manipulated, stretched, and positioned between gold electrodes. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3455338 |