Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses
We evaluate experimentally the intrinsic detection efficiency (IDE) of superconducting NbN nanowire single-photon detectors in the range of wire thicknesses from 4 to 12 nm. The study is performed in the broad spectral interval between near-ultraviolet (wavelength 400 nm) and near-infrared (waveleng...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2010-07, Vol.108 (1), p.014507-014507-9 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We evaluate experimentally the intrinsic detection efficiency (IDE) of superconducting NbN nanowire single-photon detectors in the range of wire thicknesses from 4 to 12 nm. The study is performed in the broad spectral interval between near-ultraviolet (wavelength 400 nm) and near-infrared (wavelength 2000 nm) light with plane waves at normal incidence. For visible light the IDE of the thinnest detectors reaches 70%. We use numerically computed absorptance of the nanowire-structures for the analysis of the experimental data. Variations in the detection efficiency with both the wire thickness and the wavelength evidence the red boundary of the hot-spot photon-detection mechanism. We explain the detection at larger wavelengths invoking thermal excitation of magnetic Pearl vortices over the potential barrier at the edges of the wire. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3437043 |