The periodic b -equation and Euler equations on the circle

In this note we show that the periodic b -equation can only be realized as a Euler equation on the Lie group Diff ∞ ( S 1 ) of all smooth and orientation preserving diffeomorphisms on the circle if b = 2 , i.e., for the Camassa–Holm equation. In this case the inertia operator generating the metric o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2010-05, Vol.51 (5), p.053101-053101-6
Hauptverfasser: Escher, Joachim, Seiler, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 053101-6
container_issue 5
container_start_page 053101
container_title Journal of mathematical physics
container_volume 51
creator Escher, Joachim
Seiler, Jörg
description In this note we show that the periodic b -equation can only be realized as a Euler equation on the Lie group Diff ∞ ( S 1 ) of all smooth and orientation preserving diffeomorphisms on the circle if b = 2 , i.e., for the Camassa–Holm equation. In this case the inertia operator generating the metric on Diff ∞ ( S 1 ) is given by A = 1 − ∂ x 2 . In contrast, the Degasperis–Procesi equation, for which b = 3 , is not a Euler equation on Diff ∞ ( S 1 ) for any inertia operator. Our result generalizes a recent result of Kolev [“Some geometric investigations on the Degasperis-Procesi shallow water equation,” Wave Motion 46, 412–419 (2009)].
doi_str_mv 10.1063/1.3405494
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3405494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064605441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-c1b57dcdea3de3b541c9c6a1d32c1b036d369c821f89fd4d07f37ac15534af5b3</originalsourceid><addsrcrecordid>eNp9kFtLwzAYhoMoOKcX_oMieKHQmS-HNvVOxjzAwJt5HdIcsKO2XdIK_vtlbtMLmRAIfHneNx8PQpeAJ4AzegcTyjBnBTtCI8CiSPOMi2M0wpiQlDAhTtFZCEuMAQRjI3S_eLdJZ33VmkonZZLa1aD6qm0S1ZhkNtTWJ_tRSOK4j7yuvK7tOTpxqg72YneP0dvjbDF9TuevTy_Th3mqWQ59qqHkudHGKmosLTkDXehMgaEkPmGaGZoVWhBwonCGGZw7misNnFOmHC_pGF1tezvfrgYberlsB9_ELyXHuRB5RmiEbraQ9m0I3jrZ-epD-S8JWG7MSJA7M5G93hWqoFXtvGp0FX4ChBQY4omc2HJBV_23gcOlUaPca5SbnW8PRT9b_xuTnXH_wX-XXwPJRJBF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>507887623</pqid></control><display><type>article</type><title>The periodic b -equation and Euler equations on the circle</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Escher, Joachim ; Seiler, Jörg</creator><creatorcontrib>Escher, Joachim ; Seiler, Jörg</creatorcontrib><description>In this note we show that the periodic b -equation can only be realized as a Euler equation on the Lie group Diff ∞ ( S 1 ) of all smooth and orientation preserving diffeomorphisms on the circle if b = 2 , i.e., for the Camassa–Holm equation. In this case the inertia operator generating the metric on Diff ∞ ( S 1 ) is given by A = 1 − ∂ x 2 . In contrast, the Degasperis–Procesi equation, for which b = 3 , is not a Euler equation on Diff ∞ ( S 1 ) for any inertia operator. Our result generalizes a recent result of Kolev [“Some geometric investigations on the Degasperis-Procesi shallow water equation,” Wave Motion 46, 412–419 (2009)].</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.3405494</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Eulers equations ; Exact sciences and technology ; Lie groups ; Mathematical methods in physics ; Mathematical models ; Mathematics ; Nonlinear equations ; Partial differential equations ; Physics ; Sciences and techniques of general use</subject><ispartof>Journal of mathematical physics, 2010-05, Vol.51 (5), p.053101-053101-6</ispartof><rights>American Institute of Physics</rights><rights>2010 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Physics May 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-c1b57dcdea3de3b541c9c6a1d32c1b036d369c821f89fd4d07f37ac15534af5b3</citedby><cites>FETCH-LOGICAL-c471t-c1b57dcdea3de3b541c9c6a1d32c1b036d369c821f89fd4d07f37ac15534af5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.3405494$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4497,27903,27904,76130,76136</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22901901$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Escher, Joachim</creatorcontrib><creatorcontrib>Seiler, Jörg</creatorcontrib><title>The periodic b -equation and Euler equations on the circle</title><title>Journal of mathematical physics</title><description>In this note we show that the periodic b -equation can only be realized as a Euler equation on the Lie group Diff ∞ ( S 1 ) of all smooth and orientation preserving diffeomorphisms on the circle if b = 2 , i.e., for the Camassa–Holm equation. In this case the inertia operator generating the metric on Diff ∞ ( S 1 ) is given by A = 1 − ∂ x 2 . In contrast, the Degasperis–Procesi equation, for which b = 3 , is not a Euler equation on Diff ∞ ( S 1 ) for any inertia operator. Our result generalizes a recent result of Kolev [“Some geometric investigations on the Degasperis-Procesi shallow water equation,” Wave Motion 46, 412–419 (2009)].</description><subject>Eulers equations</subject><subject>Exact sciences and technology</subject><subject>Lie groups</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nonlinear equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLwzAYhoMoOKcX_oMieKHQmS-HNvVOxjzAwJt5HdIcsKO2XdIK_vtlbtMLmRAIfHneNx8PQpeAJ4AzegcTyjBnBTtCI8CiSPOMi2M0wpiQlDAhTtFZCEuMAQRjI3S_eLdJZ33VmkonZZLa1aD6qm0S1ZhkNtTWJ_tRSOK4j7yuvK7tOTpxqg72YneP0dvjbDF9TuevTy_Th3mqWQ59qqHkudHGKmosLTkDXehMgaEkPmGaGZoVWhBwonCGGZw7misNnFOmHC_pGF1tezvfrgYberlsB9_ELyXHuRB5RmiEbraQ9m0I3jrZ-epD-S8JWG7MSJA7M5G93hWqoFXtvGp0FX4ChBQY4omc2HJBV_23gcOlUaPca5SbnW8PRT9b_xuTnXH_wX-XXwPJRJBF</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Escher, Joachim</creator><creator>Seiler, Jörg</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20100501</creationdate><title>The periodic b -equation and Euler equations on the circle</title><author>Escher, Joachim ; Seiler, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-c1b57dcdea3de3b541c9c6a1d32c1b036d369c821f89fd4d07f37ac15534af5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Eulers equations</topic><topic>Exact sciences and technology</topic><topic>Lie groups</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nonlinear equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escher, Joachim</creatorcontrib><creatorcontrib>Seiler, Jörg</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escher, Joachim</au><au>Seiler, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The periodic b -equation and Euler equations on the circle</atitle><jtitle>Journal of mathematical physics</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>51</volume><issue>5</issue><spage>053101</spage><epage>053101-6</epage><pages>053101-053101-6</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this note we show that the periodic b -equation can only be realized as a Euler equation on the Lie group Diff ∞ ( S 1 ) of all smooth and orientation preserving diffeomorphisms on the circle if b = 2 , i.e., for the Camassa–Holm equation. In this case the inertia operator generating the metric on Diff ∞ ( S 1 ) is given by A = 1 − ∂ x 2 . In contrast, the Degasperis–Procesi equation, for which b = 3 , is not a Euler equation on Diff ∞ ( S 1 ) for any inertia operator. Our result generalizes a recent result of Kolev [“Some geometric investigations on the Degasperis-Procesi shallow water equation,” Wave Motion 46, 412–419 (2009)].</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3405494</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2010-05, Vol.51 (5), p.053101-053101-6
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_3405494
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Eulers equations
Exact sciences and technology
Lie groups
Mathematical methods in physics
Mathematical models
Mathematics
Nonlinear equations
Partial differential equations
Physics
Sciences and techniques of general use
title The periodic b -equation and Euler equations on the circle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20periodic%20b%20-equation%20and%20Euler%20equations%20on%20the%20circle&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Escher,%20Joachim&rft.date=2010-05-01&rft.volume=51&rft.issue=5&rft.spage=053101&rft.epage=053101-6&rft.pages=053101-053101-6&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.3405494&rft_dat=%3Cproquest_cross%3E2064605441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=507887623&rft_id=info:pmid/&rfr_iscdi=true