Dispersion and temperature statistics of inertial particles in isotropic turbulence
The dispersion and temperature distribution of inertial particles are important in many turbulent, multiphase flow problems. In order to understand these better, direct numerical simulations (DNSs) are performed for inertial particles in a fluid with a constant temperature gradient and whose motion...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2010-06, Vol.22 (6) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 22 |
creator | WETCHAGARUN, Saensuk RILEY, James J |
description | The dispersion and temperature distribution of inertial particles are important in many turbulent, multiphase flow problems. In order to understand these better, direct numerical simulations (DNSs) are performed for inertial particles in a fluid with a constant temperature gradient and whose motion is either statistically stationary or decaying, isotropic turbulence. It is found that, for long times, the dispersion of inertial particles is the greatest when the Stokes number, Stη=τp/τη, is of order 1, where τp and τη are, respectively, the particle response time and the flow Kolmogorov time scale. A similar result is found for the long time behavior of the time rate of change of the mean-square particle temperature fluctuations, d⟨Tp′2⟩/dt. To understand the DNS results better, an evolution equation for ⟨Tp′2⟩, along with the short and long time limits, is derived analytically from the thermal energy equation for inertial particles. |
doi_str_mv | 10.1063/1.3392772 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3392772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23041278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-c5e0ab0bb52e803683b6617a3ca7bb9495ef97d94e1a4b64042987a9e33b0e503</originalsourceid><addsrcrecordid>eNo9kD9PwzAQxS0EEqUw8A28MDCknOPEjkdU_kqVGIA5OrsXyShNIp878O1J1Yrp3Tv93hueELcKVgqMflArrV1pbXkmFgoaV1hjzPnhtlAYo9WluGL-AYAZMwvx-RR5osRxHCQOW5lpN1vM-0SSM-bIOQaWYyfjQClH7OWEs4aeeH7JyGNO4xSDnCN-39MQ6FpcdNgz3Zx0Kb5fnr_Wb8Xm4_V9_bgpQlm7XISaAD14X5fUgDaN9sYoizqg9d5VrqbO2a2rSGHlTQVV6RqLjrT2QDXopbg_9oY0Mifq2inFHabfVkF7WKNV7WmNmb07shNywL5LOITI_4FSQ6VK2-g_4IVf0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dispersion and temperature statistics of inertial particles in isotropic turbulence</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>WETCHAGARUN, Saensuk ; RILEY, James J</creator><creatorcontrib>WETCHAGARUN, Saensuk ; RILEY, James J</creatorcontrib><description>The dispersion and temperature distribution of inertial particles are important in many turbulent, multiphase flow problems. In order to understand these better, direct numerical simulations (DNSs) are performed for inertial particles in a fluid with a constant temperature gradient and whose motion is either statistically stationary or decaying, isotropic turbulence. It is found that, for long times, the dispersion of inertial particles is the greatest when the Stokes number, Stη=τp/τη, is of order 1, where τp and τη are, respectively, the particle response time and the flow Kolmogorov time scale. A similar result is found for the long time behavior of the time rate of change of the mean-square particle temperature fluctuations, d⟨Tp′2⟩/dt. To understand the DNS results better, an evolution equation for ⟨Tp′2⟩, along with the short and long time limits, is derived analytically from the thermal energy equation for inertial particles.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3392772</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Isotropic turbulence; homogeneous turbulence ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; Physics ; Turbulent flows, convection, and heat transfer</subject><ispartof>Physics of fluids (1994), 2010-06, Vol.22 (6)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-c5e0ab0bb52e803683b6617a3ca7bb9495ef97d94e1a4b64042987a9e33b0e503</citedby><cites>FETCH-LOGICAL-c259t-c5e0ab0bb52e803683b6617a3ca7bb9495ef97d94e1a4b64042987a9e33b0e503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23041278$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WETCHAGARUN, Saensuk</creatorcontrib><creatorcontrib>RILEY, James J</creatorcontrib><title>Dispersion and temperature statistics of inertial particles in isotropic turbulence</title><title>Physics of fluids (1994)</title><description>The dispersion and temperature distribution of inertial particles are important in many turbulent, multiphase flow problems. In order to understand these better, direct numerical simulations (DNSs) are performed for inertial particles in a fluid with a constant temperature gradient and whose motion is either statistically stationary or decaying, isotropic turbulence. It is found that, for long times, the dispersion of inertial particles is the greatest when the Stokes number, Stη=τp/τη, is of order 1, where τp and τη are, respectively, the particle response time and the flow Kolmogorov time scale. A similar result is found for the long time behavior of the time rate of change of the mean-square particle temperature fluctuations, d⟨Tp′2⟩/dt. To understand the DNS results better, an evolution equation for ⟨Tp′2⟩, along with the short and long time limits, is derived analytically from the thermal energy equation for inertial particles.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kD9PwzAQxS0EEqUw8A28MDCknOPEjkdU_kqVGIA5OrsXyShNIp878O1J1Yrp3Tv93hueELcKVgqMflArrV1pbXkmFgoaV1hjzPnhtlAYo9WluGL-AYAZMwvx-RR5osRxHCQOW5lpN1vM-0SSM-bIOQaWYyfjQClH7OWEs4aeeH7JyGNO4xSDnCN-39MQ6FpcdNgz3Zx0Kb5fnr_Wb8Xm4_V9_bgpQlm7XISaAD14X5fUgDaN9sYoizqg9d5VrqbO2a2rSGHlTQVV6RqLjrT2QDXopbg_9oY0Mifq2inFHabfVkF7WKNV7WmNmb07shNywL5LOITI_4FSQ6VK2-g_4IVf0A</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>WETCHAGARUN, Saensuk</creator><creator>RILEY, James J</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100601</creationdate><title>Dispersion and temperature statistics of inertial particles in isotropic turbulence</title><author>WETCHAGARUN, Saensuk ; RILEY, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-c5e0ab0bb52e803683b6617a3ca7bb9495ef97d94e1a4b64042987a9e33b0e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WETCHAGARUN, Saensuk</creatorcontrib><creatorcontrib>RILEY, James J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WETCHAGARUN, Saensuk</au><au>RILEY, James J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersion and temperature statistics of inertial particles in isotropic turbulence</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>22</volume><issue>6</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The dispersion and temperature distribution of inertial particles are important in many turbulent, multiphase flow problems. In order to understand these better, direct numerical simulations (DNSs) are performed for inertial particles in a fluid with a constant temperature gradient and whose motion is either statistically stationary or decaying, isotropic turbulence. It is found that, for long times, the dispersion of inertial particles is the greatest when the Stokes number, Stη=τp/τη, is of order 1, where τp and τη are, respectively, the particle response time and the flow Kolmogorov time scale. A similar result is found for the long time behavior of the time rate of change of the mean-square particle temperature fluctuations, d⟨Tp′2⟩/dt. To understand the DNS results better, an evolution equation for ⟨Tp′2⟩, along with the short and long time limits, is derived analytically from the thermal energy equation for inertial particles.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3392772</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2010-06, Vol.22 (6) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3392772 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Isotropic turbulence homogeneous turbulence Multiphase and particle-laden flows Nonhomogeneous flows Physics Turbulent flows, convection, and heat transfer |
title | Dispersion and temperature statistics of inertial particles in isotropic turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersion%20and%20temperature%20statistics%20of%20inertial%20particles%20in%20isotropic%20turbulence&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=WETCHAGARUN,%20Saensuk&rft.date=2010-06-01&rft.volume=22&rft.issue=6&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3392772&rft_dat=%3Cpascalfrancis_cross%3E23041278%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |