Dispersion and temperature statistics of inertial particles in isotropic turbulence

The dispersion and temperature distribution of inertial particles are important in many turbulent, multiphase flow problems. In order to understand these better, direct numerical simulations (DNSs) are performed for inertial particles in a fluid with a constant temperature gradient and whose motion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2010-06, Vol.22 (6)
Hauptverfasser: WETCHAGARUN, Saensuk, RILEY, James J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physics of fluids (1994)
container_volume 22
creator WETCHAGARUN, Saensuk
RILEY, James J
description The dispersion and temperature distribution of inertial particles are important in many turbulent, multiphase flow problems. In order to understand these better, direct numerical simulations (DNSs) are performed for inertial particles in a fluid with a constant temperature gradient and whose motion is either statistically stationary or decaying, isotropic turbulence. It is found that, for long times, the dispersion of inertial particles is the greatest when the Stokes number, Stη=τp/τη, is of order 1, where τp and τη are, respectively, the particle response time and the flow Kolmogorov time scale. A similar result is found for the long time behavior of the time rate of change of the mean-square particle temperature fluctuations, d⟨Tp′2⟩/dt. To understand the DNS results better, an evolution equation for ⟨Tp′2⟩, along with the short and long time limits, is derived analytically from the thermal energy equation for inertial particles.
doi_str_mv 10.1063/1.3392772
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3392772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23041278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-c5e0ab0bb52e803683b6617a3ca7bb9495ef97d94e1a4b64042987a9e33b0e503</originalsourceid><addsrcrecordid>eNo9kD9PwzAQxS0EEqUw8A28MDCknOPEjkdU_kqVGIA5OrsXyShNIp878O1J1Yrp3Tv93hueELcKVgqMflArrV1pbXkmFgoaV1hjzPnhtlAYo9WluGL-AYAZMwvx-RR5osRxHCQOW5lpN1vM-0SSM-bIOQaWYyfjQClH7OWEs4aeeH7JyGNO4xSDnCN-39MQ6FpcdNgz3Zx0Kb5fnr_Wb8Xm4_V9_bgpQlm7XISaAD14X5fUgDaN9sYoizqg9d5VrqbO2a2rSGHlTQVV6RqLjrT2QDXopbg_9oY0Mifq2inFHabfVkF7WKNV7WmNmb07shNywL5LOITI_4FSQ6VK2-g_4IVf0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dispersion and temperature statistics of inertial particles in isotropic turbulence</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>WETCHAGARUN, Saensuk ; RILEY, James J</creator><creatorcontrib>WETCHAGARUN, Saensuk ; RILEY, James J</creatorcontrib><description>The dispersion and temperature distribution of inertial particles are important in many turbulent, multiphase flow problems. In order to understand these better, direct numerical simulations (DNSs) are performed for inertial particles in a fluid with a constant temperature gradient and whose motion is either statistically stationary or decaying, isotropic turbulence. It is found that, for long times, the dispersion of inertial particles is the greatest when the Stokes number, Stη=τp/τη, is of order 1, where τp and τη are, respectively, the particle response time and the flow Kolmogorov time scale. A similar result is found for the long time behavior of the time rate of change of the mean-square particle temperature fluctuations, d⟨Tp′2⟩/dt. To understand the DNS results better, an evolution equation for ⟨Tp′2⟩, along with the short and long time limits, is derived analytically from the thermal energy equation for inertial particles.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3392772</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Isotropic turbulence; homogeneous turbulence ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; Physics ; Turbulent flows, convection, and heat transfer</subject><ispartof>Physics of fluids (1994), 2010-06, Vol.22 (6)</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-c5e0ab0bb52e803683b6617a3ca7bb9495ef97d94e1a4b64042987a9e33b0e503</citedby><cites>FETCH-LOGICAL-c259t-c5e0ab0bb52e803683b6617a3ca7bb9495ef97d94e1a4b64042987a9e33b0e503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23041278$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WETCHAGARUN, Saensuk</creatorcontrib><creatorcontrib>RILEY, James J</creatorcontrib><title>Dispersion and temperature statistics of inertial particles in isotropic turbulence</title><title>Physics of fluids (1994)</title><description>The dispersion and temperature distribution of inertial particles are important in many turbulent, multiphase flow problems. In order to understand these better, direct numerical simulations (DNSs) are performed for inertial particles in a fluid with a constant temperature gradient and whose motion is either statistically stationary or decaying, isotropic turbulence. It is found that, for long times, the dispersion of inertial particles is the greatest when the Stokes number, Stη=τp/τη, is of order 1, where τp and τη are, respectively, the particle response time and the flow Kolmogorov time scale. A similar result is found for the long time behavior of the time rate of change of the mean-square particle temperature fluctuations, d⟨Tp′2⟩/dt. To understand the DNS results better, an evolution equation for ⟨Tp′2⟩, along with the short and long time limits, is derived analytically from the thermal energy equation for inertial particles.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kD9PwzAQxS0EEqUw8A28MDCknOPEjkdU_kqVGIA5OrsXyShNIp878O1J1Yrp3Tv93hueELcKVgqMflArrV1pbXkmFgoaV1hjzPnhtlAYo9WluGL-AYAZMwvx-RR5osRxHCQOW5lpN1vM-0SSM-bIOQaWYyfjQClH7OWEs4aeeH7JyGNO4xSDnCN-39MQ6FpcdNgz3Zx0Kb5fnr_Wb8Xm4_V9_bgpQlm7XISaAD14X5fUgDaN9sYoizqg9d5VrqbO2a2rSGHlTQVV6RqLjrT2QDXopbg_9oY0Mifq2inFHabfVkF7WKNV7WmNmb07shNywL5LOITI_4FSQ6VK2-g_4IVf0A</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>WETCHAGARUN, Saensuk</creator><creator>RILEY, James J</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100601</creationdate><title>Dispersion and temperature statistics of inertial particles in isotropic turbulence</title><author>WETCHAGARUN, Saensuk ; RILEY, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-c5e0ab0bb52e803683b6617a3ca7bb9495ef97d94e1a4b64042987a9e33b0e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WETCHAGARUN, Saensuk</creatorcontrib><creatorcontrib>RILEY, James J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WETCHAGARUN, Saensuk</au><au>RILEY, James J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dispersion and temperature statistics of inertial particles in isotropic turbulence</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>22</volume><issue>6</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The dispersion and temperature distribution of inertial particles are important in many turbulent, multiphase flow problems. In order to understand these better, direct numerical simulations (DNSs) are performed for inertial particles in a fluid with a constant temperature gradient and whose motion is either statistically stationary or decaying, isotropic turbulence. It is found that, for long times, the dispersion of inertial particles is the greatest when the Stokes number, Stη=τp/τη, is of order 1, where τp and τη are, respectively, the particle response time and the flow Kolmogorov time scale. A similar result is found for the long time behavior of the time rate of change of the mean-square particle temperature fluctuations, d⟨Tp′2⟩/dt. To understand the DNS results better, an evolution equation for ⟨Tp′2⟩, along with the short and long time limits, is derived analytically from the thermal energy equation for inertial particles.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3392772</doi></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2010-06, Vol.22 (6)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_3392772
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Isotropic turbulence
homogeneous turbulence
Multiphase and particle-laden flows
Nonhomogeneous flows
Physics
Turbulent flows, convection, and heat transfer
title Dispersion and temperature statistics of inertial particles in isotropic turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dispersion%20and%20temperature%20statistics%20of%20inertial%20particles%20in%20isotropic%20turbulence&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=WETCHAGARUN,%20Saensuk&rft.date=2010-06-01&rft.volume=22&rft.issue=6&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3392772&rft_dat=%3Cpascalfrancis_cross%3E23041278%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true