Noninvasive glucometer model using partial least square regression technique for human blood matrix
In this article, we have highlighted the partial least square regression (PLSR) model to predict the glucose level in human blood by considering only five variants. The PLSR model is experimentally validated for the 13 templates samples. The root mean square error analysis of design model and experi...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2010-05, Vol.107 (10), p.104701-104701-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104701-5 |
---|---|
container_issue | 10 |
container_start_page | 104701 |
container_title | Journal of applied physics |
container_volume | 107 |
creator | Parab, J. S. Gad, R. S. Naik, G. M. |
description | In this article, we have highlighted the partial least square regression (PLSR) model to predict the glucose level in human blood by considering only five variants. The PLSR model is experimentally validated for the 13 templates samples. The root mean square error analysis of design model and experimental sample is found to be satisfactory with the values of 3.459 and 5.543, respectively. In PLSR templates design is a critical issue for the number of variants participating in the model. Ensemble consisting of five major variants is simulated to replicate the signatures of these constituents in the human blood, i.e., alanine, urea, lactate, glucose, and ascorbate. Multivariate system using PLSR plays important role in understanding chemometrics of such ensemble. The resultant spectra of all these constituents are generated to create templates for the PLSR model. This model has potential scope in designing a near-infrared spectroscopy based noninvasive glucometer. |
doi_str_mv | 10.1063/1.3380850 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3380850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-8b63daaf5dc738022330959014aed1b718110b705767bdb8b5ce97c1c125139c3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsL_yBbF1PfmzRNshGkaBWKbnQ9JJlMG5mZtEmm6N9baQU3ru7mcOEcQq4RJggzdosTxiRIDidkhCBVITiHUzICKLGQSqhzcpHSBwCiZGpE7Evofb_Tye8cXbWDDZ3LLtIu1K6lQ_L9im50zF63tHU6ZZq2g46ORreKLiUfepqdXfd-OzjahEjXQ6d7atoQatrpHP3nJTlrdJvc1XHH5P3x4W3-VCxfF8_z-2VhSznNhTQzVmvd8NqKvUNZMgaKK8CpdjUagRIRjAAuZsLURhpunRIWLZYcmbJsTG4OvzaGlKJrqk30nY5fFUL1U6fC6lhnz94d2GR91nmv8T_8J1H1m4h9AyVhbmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Noninvasive glucometer model using partial least square regression technique for human blood matrix</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Parab, J. S. ; Gad, R. S. ; Naik, G. M.</creator><creatorcontrib>Parab, J. S. ; Gad, R. S. ; Naik, G. M.</creatorcontrib><description>In this article, we have highlighted the partial least square regression (PLSR) model to predict the glucose level in human blood by considering only five variants. The PLSR model is experimentally validated for the 13 templates samples. The root mean square error analysis of design model and experimental sample is found to be satisfactory with the values of 3.459 and 5.543, respectively. In PLSR templates design is a critical issue for the number of variants participating in the model. Ensemble consisting of five major variants is simulated to replicate the signatures of these constituents in the human blood, i.e., alanine, urea, lactate, glucose, and ascorbate. Multivariate system using PLSR plays important role in understanding chemometrics of such ensemble. The resultant spectra of all these constituents are generated to create templates for the PLSR model. This model has potential scope in designing a near-infrared spectroscopy based noninvasive glucometer.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3380850</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2010-05, Vol.107 (10), p.104701-104701-5</ispartof><rights>2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-8b63daaf5dc738022330959014aed1b718110b705767bdb8b5ce97c1c125139c3</citedby><cites>FETCH-LOGICAL-c284t-8b63daaf5dc738022330959014aed1b718110b705767bdb8b5ce97c1c125139c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3380850$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76256,76262</link.rule.ids></links><search><creatorcontrib>Parab, J. S.</creatorcontrib><creatorcontrib>Gad, R. S.</creatorcontrib><creatorcontrib>Naik, G. M.</creatorcontrib><title>Noninvasive glucometer model using partial least square regression technique for human blood matrix</title><title>Journal of applied physics</title><description>In this article, we have highlighted the partial least square regression (PLSR) model to predict the glucose level in human blood by considering only five variants. The PLSR model is experimentally validated for the 13 templates samples. The root mean square error analysis of design model and experimental sample is found to be satisfactory with the values of 3.459 and 5.543, respectively. In PLSR templates design is a critical issue for the number of variants participating in the model. Ensemble consisting of five major variants is simulated to replicate the signatures of these constituents in the human blood, i.e., alanine, urea, lactate, glucose, and ascorbate. Multivariate system using PLSR plays important role in understanding chemometrics of such ensemble. The resultant spectra of all these constituents are generated to create templates for the PLSR model. This model has potential scope in designing a near-infrared spectroscopy based noninvasive glucometer.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWKsL_yBbF1PfmzRNshGkaBWKbnQ9JJlMG5mZtEmm6N9baQU3ru7mcOEcQq4RJggzdosTxiRIDidkhCBVITiHUzICKLGQSqhzcpHSBwCiZGpE7Evofb_Tye8cXbWDDZ3LLtIu1K6lQ_L9im50zF63tHU6ZZq2g46ORreKLiUfepqdXfd-OzjahEjXQ6d7atoQatrpHP3nJTlrdJvc1XHH5P3x4W3-VCxfF8_z-2VhSznNhTQzVmvd8NqKvUNZMgaKK8CpdjUagRIRjAAuZsLURhpunRIWLZYcmbJsTG4OvzaGlKJrqk30nY5fFUL1U6fC6lhnz94d2GR91nmv8T_8J1H1m4h9AyVhbmI</recordid><startdate>20100515</startdate><enddate>20100515</enddate><creator>Parab, J. S.</creator><creator>Gad, R. S.</creator><creator>Naik, G. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100515</creationdate><title>Noninvasive glucometer model using partial least square regression technique for human blood matrix</title><author>Parab, J. S. ; Gad, R. S. ; Naik, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-8b63daaf5dc738022330959014aed1b718110b705767bdb8b5ce97c1c125139c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parab, J. S.</creatorcontrib><creatorcontrib>Gad, R. S.</creatorcontrib><creatorcontrib>Naik, G. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parab, J. S.</au><au>Gad, R. S.</au><au>Naik, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive glucometer model using partial least square regression technique for human blood matrix</atitle><jtitle>Journal of applied physics</jtitle><date>2010-05-15</date><risdate>2010</risdate><volume>107</volume><issue>10</issue><spage>104701</spage><epage>104701-5</epage><pages>104701-104701-5</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this article, we have highlighted the partial least square regression (PLSR) model to predict the glucose level in human blood by considering only five variants. The PLSR model is experimentally validated for the 13 templates samples. The root mean square error analysis of design model and experimental sample is found to be satisfactory with the values of 3.459 and 5.543, respectively. In PLSR templates design is a critical issue for the number of variants participating in the model. Ensemble consisting of five major variants is simulated to replicate the signatures of these constituents in the human blood, i.e., alanine, urea, lactate, glucose, and ascorbate. Multivariate system using PLSR plays important role in understanding chemometrics of such ensemble. The resultant spectra of all these constituents are generated to create templates for the PLSR model. This model has potential scope in designing a near-infrared spectroscopy based noninvasive glucometer.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3380850</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2010-05, Vol.107 (10), p.104701-104701-5 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3380850 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
title | Noninvasive glucometer model using partial least square regression technique for human blood matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20glucometer%20model%20using%20partial%20least%20square%20regression%20technique%20for%20human%20blood%20matrix&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Parab,%20J.%20S.&rft.date=2010-05-15&rft.volume=107&rft.issue=10&rft.spage=104701&rft.epage=104701-5&rft.pages=104701-104701-5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3380850&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |