Noninvasive glucometer model using partial least square regression technique for human blood matrix

In this article, we have highlighted the partial least square regression (PLSR) model to predict the glucose level in human blood by considering only five variants. The PLSR model is experimentally validated for the 13 templates samples. The root mean square error analysis of design model and experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2010-05, Vol.107 (10), p.104701-104701-5
Hauptverfasser: Parab, J. S., Gad, R. S., Naik, G. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104701-5
container_issue 10
container_start_page 104701
container_title Journal of applied physics
container_volume 107
creator Parab, J. S.
Gad, R. S.
Naik, G. M.
description In this article, we have highlighted the partial least square regression (PLSR) model to predict the glucose level in human blood by considering only five variants. The PLSR model is experimentally validated for the 13 templates samples. The root mean square error analysis of design model and experimental sample is found to be satisfactory with the values of 3.459 and 5.543, respectively. In PLSR templates design is a critical issue for the number of variants participating in the model. Ensemble consisting of five major variants is simulated to replicate the signatures of these constituents in the human blood, i.e., alanine, urea, lactate, glucose, and ascorbate. Multivariate system using PLSR plays important role in understanding chemometrics of such ensemble. The resultant spectra of all these constituents are generated to create templates for the PLSR model. This model has potential scope in designing a near-infrared spectroscopy based noninvasive glucometer.
doi_str_mv 10.1063/1.3380850
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3380850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-8b63daaf5dc738022330959014aed1b718110b705767bdb8b5ce97c1c125139c3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsL_yBbF1PfmzRNshGkaBWKbnQ9JJlMG5mZtEmm6N9baQU3ru7mcOEcQq4RJggzdosTxiRIDidkhCBVITiHUzICKLGQSqhzcpHSBwCiZGpE7Evofb_Tye8cXbWDDZ3LLtIu1K6lQ_L9im50zF63tHU6ZZq2g46ORreKLiUfepqdXfd-OzjahEjXQ6d7atoQatrpHP3nJTlrdJvc1XHH5P3x4W3-VCxfF8_z-2VhSznNhTQzVmvd8NqKvUNZMgaKK8CpdjUagRIRjAAuZsLURhpunRIWLZYcmbJsTG4OvzaGlKJrqk30nY5fFUL1U6fC6lhnz94d2GR91nmv8T_8J1H1m4h9AyVhbmI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Noninvasive glucometer model using partial least square regression technique for human blood matrix</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Parab, J. S. ; Gad, R. S. ; Naik, G. M.</creator><creatorcontrib>Parab, J. S. ; Gad, R. S. ; Naik, G. M.</creatorcontrib><description>In this article, we have highlighted the partial least square regression (PLSR) model to predict the glucose level in human blood by considering only five variants. The PLSR model is experimentally validated for the 13 templates samples. The root mean square error analysis of design model and experimental sample is found to be satisfactory with the values of 3.459 and 5.543, respectively. In PLSR templates design is a critical issue for the number of variants participating in the model. Ensemble consisting of five major variants is simulated to replicate the signatures of these constituents in the human blood, i.e., alanine, urea, lactate, glucose, and ascorbate. Multivariate system using PLSR plays important role in understanding chemometrics of such ensemble. The resultant spectra of all these constituents are generated to create templates for the PLSR model. This model has potential scope in designing a near-infrared spectroscopy based noninvasive glucometer.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3380850</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2010-05, Vol.107 (10), p.104701-104701-5</ispartof><rights>2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-8b63daaf5dc738022330959014aed1b718110b705767bdb8b5ce97c1c125139c3</citedby><cites>FETCH-LOGICAL-c284t-8b63daaf5dc738022330959014aed1b718110b705767bdb8b5ce97c1c125139c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3380850$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76256,76262</link.rule.ids></links><search><creatorcontrib>Parab, J. S.</creatorcontrib><creatorcontrib>Gad, R. S.</creatorcontrib><creatorcontrib>Naik, G. M.</creatorcontrib><title>Noninvasive glucometer model using partial least square regression technique for human blood matrix</title><title>Journal of applied physics</title><description>In this article, we have highlighted the partial least square regression (PLSR) model to predict the glucose level in human blood by considering only five variants. The PLSR model is experimentally validated for the 13 templates samples. The root mean square error analysis of design model and experimental sample is found to be satisfactory with the values of 3.459 and 5.543, respectively. In PLSR templates design is a critical issue for the number of variants participating in the model. Ensemble consisting of five major variants is simulated to replicate the signatures of these constituents in the human blood, i.e., alanine, urea, lactate, glucose, and ascorbate. Multivariate system using PLSR plays important role in understanding chemometrics of such ensemble. The resultant spectra of all these constituents are generated to create templates for the PLSR model. This model has potential scope in designing a near-infrared spectroscopy based noninvasive glucometer.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWKsL_yBbF1PfmzRNshGkaBWKbnQ9JJlMG5mZtEmm6N9baQU3ru7mcOEcQq4RJggzdosTxiRIDidkhCBVITiHUzICKLGQSqhzcpHSBwCiZGpE7Evofb_Tye8cXbWDDZ3LLtIu1K6lQ_L9im50zF63tHU6ZZq2g46ORreKLiUfepqdXfd-OzjahEjXQ6d7atoQatrpHP3nJTlrdJvc1XHH5P3x4W3-VCxfF8_z-2VhSznNhTQzVmvd8NqKvUNZMgaKK8CpdjUagRIRjAAuZsLURhpunRIWLZYcmbJsTG4OvzaGlKJrqk30nY5fFUL1U6fC6lhnz94d2GR91nmv8T_8J1H1m4h9AyVhbmI</recordid><startdate>20100515</startdate><enddate>20100515</enddate><creator>Parab, J. S.</creator><creator>Gad, R. S.</creator><creator>Naik, G. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100515</creationdate><title>Noninvasive glucometer model using partial least square regression technique for human blood matrix</title><author>Parab, J. S. ; Gad, R. S. ; Naik, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-8b63daaf5dc738022330959014aed1b718110b705767bdb8b5ce97c1c125139c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parab, J. S.</creatorcontrib><creatorcontrib>Gad, R. S.</creatorcontrib><creatorcontrib>Naik, G. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parab, J. S.</au><au>Gad, R. S.</au><au>Naik, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive glucometer model using partial least square regression technique for human blood matrix</atitle><jtitle>Journal of applied physics</jtitle><date>2010-05-15</date><risdate>2010</risdate><volume>107</volume><issue>10</issue><spage>104701</spage><epage>104701-5</epage><pages>104701-104701-5</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this article, we have highlighted the partial least square regression (PLSR) model to predict the glucose level in human blood by considering only five variants. The PLSR model is experimentally validated for the 13 templates samples. The root mean square error analysis of design model and experimental sample is found to be satisfactory with the values of 3.459 and 5.543, respectively. In PLSR templates design is a critical issue for the number of variants participating in the model. Ensemble consisting of five major variants is simulated to replicate the signatures of these constituents in the human blood, i.e., alanine, urea, lactate, glucose, and ascorbate. Multivariate system using PLSR plays important role in understanding chemometrics of such ensemble. The resultant spectra of all these constituents are generated to create templates for the PLSR model. This model has potential scope in designing a near-infrared spectroscopy based noninvasive glucometer.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3380850</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2010-05, Vol.107 (10), p.104701-104701-5
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_3380850
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Noninvasive glucometer model using partial least square regression technique for human blood matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20glucometer%20model%20using%20partial%20least%20square%20regression%20technique%20for%20human%20blood%20matrix&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Parab,%20J.%20S.&rft.date=2010-05-15&rft.volume=107&rft.issue=10&rft.spage=104701&rft.epage=104701-5&rft.pages=104701-104701-5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3380850&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true