Symmetries of spin systems and Birman–Wenzl–Murakami algebra

We consider integrable open spin chains related to the quantum affine algebras U q ( o ( 3 ) ˆ ) and U q ( A 2 ( 2 ) ) . We discuss the symmetry algebras of these chains with the local C 3 space related to the Birman–Wenzl–Murakami algebra. The symmetry algebra and the Birman–Wenzl–Murakami algebra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2010-04, Vol.51 (4), p.043516-043516-15
Hauptverfasser: Kulish, P. P., Manojlović, N., Nagy, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 043516-15
container_issue 4
container_start_page 043516
container_title Journal of mathematical physics
container_volume 51
creator Kulish, P. P.
Manojlović, N.
Nagy, Z.
description We consider integrable open spin chains related to the quantum affine algebras U q ( o ( 3 ) ˆ ) and U q ( A 2 ( 2 ) ) . We discuss the symmetry algebras of these chains with the local C 3 space related to the Birman–Wenzl–Murakami algebra. The symmetry algebra and the Birman–Wenzl–Murakami algebra centralize each other in the representation space H = ⊗ 1 N C 3 of the system, and this determines the structure of the spin system spectra. Consequently, the corresponding multiplet structure of the energy spectra is obtained.
doi_str_mv 10.1063/1.3366259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3366259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2034943501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-409ad868a2d2d14dcfdd552a2df58736574145c176bdbda7faa445c48cdc594c3</originalsourceid><addsrcrecordid>eNqNkMtKAzEARYMoWKsL_2BwpzA178lsRFt8QcWFisuQ5iGpnYfJVKgr_8E_9EtMaaErxdXlwuFeOAAcIjhAkJNTNCCEc8zKLdBDUJR5wZnYBj0IMc4xFWIX7MU4hRAhQWkPnD8sqsp2wduYNS6Lra-zuIidrWKmapMNfahU_f359Wzrj1nKu3lQr6rymZq92ElQ-2DHqVm0B-vsg6ery8fRTT6-v74dXYxzTQTqcgpLZQQXChtsEDXaGcMYTtUxURDOCooo06jgEzMxqnBK0dSp0EazkmrSB0er3TY0b3MbOzlt5qFOlxIjxhHnhCfoeAXp0MQYrJNt8JUKC4mgXPqRSK79JPZsxUbtO9X5pv4d3kiSjZNLSTKmgZN_D_wFvzdhA8rWOPIDEReLWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215616636</pqid></control><display><type>article</type><title>Symmetries of spin systems and Birman–Wenzl–Murakami algebra</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Kulish, P. P. ; Manojlović, N. ; Nagy, Z.</creator><creatorcontrib>Kulish, P. P. ; Manojlović, N. ; Nagy, Z.</creatorcontrib><description>We consider integrable open spin chains related to the quantum affine algebras U q ( o ( 3 ) ˆ ) and U q ( A 2 ( 2 ) ) . We discuss the symmetry algebras of these chains with the local C 3 space related to the Birman–Wenzl–Murakami algebra. The symmetry algebra and the Birman–Wenzl–Murakami algebra centralize each other in the representation space H = ⊗ 1 N C 3 of the system, and this determines the structure of the spin system spectra. Consequently, the corresponding multiplet structure of the energy spectra is obtained.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.3366259</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Mathematical analysis ; Mathematical models ; Quantum physics ; Symmetry</subject><ispartof>Journal of mathematical physics, 2010-04, Vol.51 (4), p.043516-043516-15</ispartof><rights>American Institute of Physics</rights><rights>2010 American Institute of Physics</rights><rights>Copyright American Institute of Physics Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-409ad868a2d2d14dcfdd552a2df58736574145c176bdbda7faa445c48cdc594c3</citedby><cites>FETCH-LOGICAL-c381t-409ad868a2d2d14dcfdd552a2df58736574145c176bdbda7faa445c48cdc594c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.3366259$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,1560,4513,27929,27930,76389,76395</link.rule.ids></links><search><creatorcontrib>Kulish, P. P.</creatorcontrib><creatorcontrib>Manojlović, N.</creatorcontrib><creatorcontrib>Nagy, Z.</creatorcontrib><title>Symmetries of spin systems and Birman–Wenzl–Murakami algebra</title><title>Journal of mathematical physics</title><description>We consider integrable open spin chains related to the quantum affine algebras U q ( o ( 3 ) ˆ ) and U q ( A 2 ( 2 ) ) . We discuss the symmetry algebras of these chains with the local C 3 space related to the Birman–Wenzl–Murakami algebra. The symmetry algebra and the Birman–Wenzl–Murakami algebra centralize each other in the representation space H = ⊗ 1 N C 3 of the system, and this determines the structure of the spin system spectra. Consequently, the corresponding multiplet structure of the energy spectra is obtained.</description><subject>Algebra</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Quantum physics</subject><subject>Symmetry</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEARYMoWKsL_2BwpzA178lsRFt8QcWFisuQ5iGpnYfJVKgr_8E_9EtMaaErxdXlwuFeOAAcIjhAkJNTNCCEc8zKLdBDUJR5wZnYBj0IMc4xFWIX7MU4hRAhQWkPnD8sqsp2wduYNS6Lra-zuIidrWKmapMNfahU_f359Wzrj1nKu3lQr6rymZq92ElQ-2DHqVm0B-vsg6ery8fRTT6-v74dXYxzTQTqcgpLZQQXChtsEDXaGcMYTtUxURDOCooo06jgEzMxqnBK0dSp0EazkmrSB0er3TY0b3MbOzlt5qFOlxIjxhHnhCfoeAXp0MQYrJNt8JUKC4mgXPqRSK79JPZsxUbtO9X5pv4d3kiSjZNLSTKmgZN_D_wFvzdhA8rWOPIDEReLWw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Kulish, P. P.</creator><creator>Manojlović, N.</creator><creator>Nagy, Z.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20100401</creationdate><title>Symmetries of spin systems and Birman–Wenzl–Murakami algebra</title><author>Kulish, P. P. ; Manojlović, N. ; Nagy, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-409ad868a2d2d14dcfdd552a2df58736574145c176bdbda7faa445c48cdc594c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Quantum physics</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulish, P. P.</creatorcontrib><creatorcontrib>Manojlović, N.</creatorcontrib><creatorcontrib>Nagy, Z.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulish, P. P.</au><au>Manojlović, N.</au><au>Nagy, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetries of spin systems and Birman–Wenzl–Murakami algebra</atitle><jtitle>Journal of mathematical physics</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>51</volume><issue>4</issue><spage>043516</spage><epage>043516-15</epage><pages>043516-043516-15</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We consider integrable open spin chains related to the quantum affine algebras U q ( o ( 3 ) ˆ ) and U q ( A 2 ( 2 ) ) . We discuss the symmetry algebras of these chains with the local C 3 space related to the Birman–Wenzl–Murakami algebra. The symmetry algebra and the Birman–Wenzl–Murakami algebra centralize each other in the representation space H = ⊗ 1 N C 3 of the system, and this determines the structure of the spin system spectra. Consequently, the corresponding multiplet structure of the energy spectra is obtained.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3366259</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2010-04, Vol.51 (4), p.043516-043516-15
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_3366259
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Algebra
Mathematical analysis
Mathematical models
Quantum physics
Symmetry
title Symmetries of spin systems and Birman–Wenzl–Murakami algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetries%20of%20spin%20systems%20and%20Birman%E2%80%93Wenzl%E2%80%93Murakami%20algebra&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Kulish,%20P.%20P.&rft.date=2010-04-01&rft.volume=51&rft.issue=4&rft.spage=043516&rft.epage=043516-15&rft.pages=043516-043516-15&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.3366259&rft_dat=%3Cproquest_cross%3E2034943501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215616636&rft_id=info:pmid/&rfr_iscdi=true