Properties of Al/p-CdTe schottky barriers

Al/p-CdTe Schottky barriers diodes were prepared from the Te (1̄1̄1̄) face of lightly doped p-type CdTe single crystals. The characteristics of the diodes have been found to depend strongly on the surface preparation of CdTe. The current-voltage characteristics of diodes prepared from Br2-CH3OH etch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Appl. Phys.; (United States) 1985-12, Vol.58 (11), p.4296-4299
Hauptverfasser: CHU, T. L, CHU, S. S, ANG, S. T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4299
container_issue 11
container_start_page 4296
container_title J. Appl. Phys.; (United States)
container_volume 58
creator CHU, T. L
CHU, S. S
ANG, S. T
description Al/p-CdTe Schottky barriers diodes were prepared from the Te (1̄1̄1̄) face of lightly doped p-type CdTe single crystals. The characteristics of the diodes have been found to depend strongly on the surface preparation of CdTe. The current-voltage characteristics of diodes prepared from Br2-CH3OH etched surfaces are dominated by the tunneling mechanism with high saturation current densities. The use of Br2-CH3OH etch followed by heating in hydrogen has pronounced effects on the diode quality factor and saturation current densities due to the restoration of the surface stoichiometry. The C-V measurements at 1 and 10 MHz indicate that Schottky diodes prepared from Br2-CH3OH etched and 450 °C hydrogen-annealed CdTe have a barrier height of 0.76 V and that diodes prepared from Br2-CH3OH etched or lower-temperature hydrogen-annealed CdTe show larger barrier heights. In latter cases, the barrier height appears to be controlled by the metal-semiconductor interface states. In Al/p-CdTe Schottky barriers with low interface state density, the temperature dependence of the saturation current density suggests that diffusion is the dominant mechanism of current transport, due presumably to the low carrier density in CdTe.
doi_str_mv 10.1063/1.335515
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_335515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>8717669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-2d298419a80bf9aa613997595c9becc9c976114650e097814521063966425cfa3</originalsourceid><addsrcrecordid>eNo90EtLw0AUBeBBFIxV8CcEcaGLtHMzmcddluALCrqo62FyO6HRmISZ2fTf2xJxdTYfh8Nh7Bb4ErgSK1gKISXIM5YBN1hoKfk5yzgvoTCo8ZJdxfjFOYARmLHHjzBOPqTOx3xs83W_mop6t_V5pP2Y0vchb1wInQ_xml20ro_-5i8X7PP5aVu_Fpv3l7d6vSlIVDoV5a5EUwE6w5sWnVMgELVESdh4IiTUCqBSknuO2kAly9NuVKoqJbVOLNjd3DvG1NlIXfK0p3EYPCWrSkQlqiN6mBGFMcbgWzuF7seFgwVuT30W7PzDkd7PdHKRXN8GN1AX_73RoJVC8QsQCVh8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Properties of Al/p-CdTe schottky barriers</title><source>AIP Digital Archive</source><creator>CHU, T. L ; CHU, S. S ; ANG, S. T</creator><creatorcontrib>CHU, T. L ; CHU, S. S ; ANG, S. T ; Southern Methodist University, Dallas, Texas 75275</creatorcontrib><description>Al/p-CdTe Schottky barriers diodes were prepared from the Te (1̄1̄1̄) face of lightly doped p-type CdTe single crystals. The characteristics of the diodes have been found to depend strongly on the surface preparation of CdTe. The current-voltage characteristics of diodes prepared from Br2-CH3OH etched surfaces are dominated by the tunneling mechanism with high saturation current densities. The use of Br2-CH3OH etch followed by heating in hydrogen has pronounced effects on the diode quality factor and saturation current densities due to the restoration of the surface stoichiometry. The C-V measurements at 1 and 10 MHz indicate that Schottky diodes prepared from Br2-CH3OH etched and 450 °C hydrogen-annealed CdTe have a barrier height of 0.76 V and that diodes prepared from Br2-CH3OH etched or lower-temperature hydrogen-annealed CdTe show larger barrier heights. In latter cases, the barrier height appears to be controlled by the metal-semiconductor interface states. In Al/p-CdTe Schottky barriers with low interface state density, the temperature dependence of the saturation current density suggests that diffusion is the dominant mechanism of current transport, due presumably to the low carrier density in CdTe.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.335515</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>420800 - Engineering- Electronic Circuits &amp; Devices- (-1989) ; ALUMINIUM ; ANNEALING ; Applied sciences ; BROMINE ; CADMIUM COMPOUNDS ; CADMIUM TELLURIDES ; CHALCOGENIDES ; DATA ; DIFFUSION ; Diodes ; ELECTRIC CONDUCTIVITY ; ELECTRIC POTENTIAL ; ELECTRICAL PROPERTIES ; Electronics ; ELEMENTS ; ENGINEERING ; ETCHING ; Exact sciences and technology ; EXPERIMENTAL DATA ; FABRICATION ; HALOGENS ; HEAT TREATMENTS ; INFORMATION ; METALS ; NONMETALS ; NUMERICAL DATA ; PHYSICAL PROPERTIES ; POTENTIALS ; SCHOTTKY BARRIER DIODES ; SEMICONDUCTOR DEVICES ; SEMICONDUCTOR DIODES ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; STOICHIOMETRY ; SURFACE FINISHING ; TELLURIDES ; TELLURIUM COMPOUNDS ; TUNNEL EFFECT</subject><ispartof>J. Appl. Phys.; (United States), 1985-12, Vol.58 (11), p.4296-4299</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-2d298419a80bf9aa613997595c9becc9c976114650e097814521063966425cfa3</citedby><cites>FETCH-LOGICAL-c347t-2d298419a80bf9aa613997595c9becc9c976114650e097814521063966425cfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8717669$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6299634$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>CHU, T. L</creatorcontrib><creatorcontrib>CHU, S. S</creatorcontrib><creatorcontrib>ANG, S. T</creatorcontrib><creatorcontrib>Southern Methodist University, Dallas, Texas 75275</creatorcontrib><title>Properties of Al/p-CdTe schottky barriers</title><title>J. Appl. Phys.; (United States)</title><description>Al/p-CdTe Schottky barriers diodes were prepared from the Te (1̄1̄1̄) face of lightly doped p-type CdTe single crystals. The characteristics of the diodes have been found to depend strongly on the surface preparation of CdTe. The current-voltage characteristics of diodes prepared from Br2-CH3OH etched surfaces are dominated by the tunneling mechanism with high saturation current densities. The use of Br2-CH3OH etch followed by heating in hydrogen has pronounced effects on the diode quality factor and saturation current densities due to the restoration of the surface stoichiometry. The C-V measurements at 1 and 10 MHz indicate that Schottky diodes prepared from Br2-CH3OH etched and 450 °C hydrogen-annealed CdTe have a barrier height of 0.76 V and that diodes prepared from Br2-CH3OH etched or lower-temperature hydrogen-annealed CdTe show larger barrier heights. In latter cases, the barrier height appears to be controlled by the metal-semiconductor interface states. In Al/p-CdTe Schottky barriers with low interface state density, the temperature dependence of the saturation current density suggests that diffusion is the dominant mechanism of current transport, due presumably to the low carrier density in CdTe.</description><subject>420800 - Engineering- Electronic Circuits &amp; Devices- (-1989)</subject><subject>ALUMINIUM</subject><subject>ANNEALING</subject><subject>Applied sciences</subject><subject>BROMINE</subject><subject>CADMIUM COMPOUNDS</subject><subject>CADMIUM TELLURIDES</subject><subject>CHALCOGENIDES</subject><subject>DATA</subject><subject>DIFFUSION</subject><subject>Diodes</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRIC POTENTIAL</subject><subject>ELECTRICAL PROPERTIES</subject><subject>Electronics</subject><subject>ELEMENTS</subject><subject>ENGINEERING</subject><subject>ETCHING</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FABRICATION</subject><subject>HALOGENS</subject><subject>HEAT TREATMENTS</subject><subject>INFORMATION</subject><subject>METALS</subject><subject>NONMETALS</subject><subject>NUMERICAL DATA</subject><subject>PHYSICAL PROPERTIES</subject><subject>POTENTIALS</subject><subject>SCHOTTKY BARRIER DIODES</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SEMICONDUCTOR DIODES</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>STOICHIOMETRY</subject><subject>SURFACE FINISHING</subject><subject>TELLURIDES</subject><subject>TELLURIUM COMPOUNDS</subject><subject>TUNNEL EFFECT</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNo90EtLw0AUBeBBFIxV8CcEcaGLtHMzmcddluALCrqo62FyO6HRmISZ2fTf2xJxdTYfh8Nh7Bb4ErgSK1gKISXIM5YBN1hoKfk5yzgvoTCo8ZJdxfjFOYARmLHHjzBOPqTOx3xs83W_mop6t_V5pP2Y0vchb1wInQ_xml20ro_-5i8X7PP5aVu_Fpv3l7d6vSlIVDoV5a5EUwE6w5sWnVMgELVESdh4IiTUCqBSknuO2kAly9NuVKoqJbVOLNjd3DvG1NlIXfK0p3EYPCWrSkQlqiN6mBGFMcbgWzuF7seFgwVuT30W7PzDkd7PdHKRXN8GN1AX_73RoJVC8QsQCVh8</recordid><startdate>19851201</startdate><enddate>19851201</enddate><creator>CHU, T. L</creator><creator>CHU, S. S</creator><creator>ANG, S. T</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19851201</creationdate><title>Properties of Al/p-CdTe schottky barriers</title><author>CHU, T. L ; CHU, S. S ; ANG, S. T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-2d298419a80bf9aa613997595c9becc9c976114650e097814521063966425cfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>420800 - Engineering- Electronic Circuits &amp; Devices- (-1989)</topic><topic>ALUMINIUM</topic><topic>ANNEALING</topic><topic>Applied sciences</topic><topic>BROMINE</topic><topic>CADMIUM COMPOUNDS</topic><topic>CADMIUM TELLURIDES</topic><topic>CHALCOGENIDES</topic><topic>DATA</topic><topic>DIFFUSION</topic><topic>Diodes</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRIC POTENTIAL</topic><topic>ELECTRICAL PROPERTIES</topic><topic>Electronics</topic><topic>ELEMENTS</topic><topic>ENGINEERING</topic><topic>ETCHING</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FABRICATION</topic><topic>HALOGENS</topic><topic>HEAT TREATMENTS</topic><topic>INFORMATION</topic><topic>METALS</topic><topic>NONMETALS</topic><topic>NUMERICAL DATA</topic><topic>PHYSICAL PROPERTIES</topic><topic>POTENTIALS</topic><topic>SCHOTTKY BARRIER DIODES</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SEMICONDUCTOR DIODES</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>STOICHIOMETRY</topic><topic>SURFACE FINISHING</topic><topic>TELLURIDES</topic><topic>TELLURIUM COMPOUNDS</topic><topic>TUNNEL EFFECT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHU, T. L</creatorcontrib><creatorcontrib>CHU, S. S</creatorcontrib><creatorcontrib>ANG, S. T</creatorcontrib><creatorcontrib>Southern Methodist University, Dallas, Texas 75275</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Appl. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHU, T. L</au><au>CHU, S. S</au><au>ANG, S. T</au><aucorp>Southern Methodist University, Dallas, Texas 75275</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of Al/p-CdTe schottky barriers</atitle><jtitle>J. Appl. Phys.; (United States)</jtitle><date>1985-12-01</date><risdate>1985</risdate><volume>58</volume><issue>11</issue><spage>4296</spage><epage>4299</epage><pages>4296-4299</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Al/p-CdTe Schottky barriers diodes were prepared from the Te (1̄1̄1̄) face of lightly doped p-type CdTe single crystals. The characteristics of the diodes have been found to depend strongly on the surface preparation of CdTe. The current-voltage characteristics of diodes prepared from Br2-CH3OH etched surfaces are dominated by the tunneling mechanism with high saturation current densities. The use of Br2-CH3OH etch followed by heating in hydrogen has pronounced effects on the diode quality factor and saturation current densities due to the restoration of the surface stoichiometry. The C-V measurements at 1 and 10 MHz indicate that Schottky diodes prepared from Br2-CH3OH etched and 450 °C hydrogen-annealed CdTe have a barrier height of 0.76 V and that diodes prepared from Br2-CH3OH etched or lower-temperature hydrogen-annealed CdTe show larger barrier heights. In latter cases, the barrier height appears to be controlled by the metal-semiconductor interface states. In Al/p-CdTe Schottky barriers with low interface state density, the temperature dependence of the saturation current density suggests that diffusion is the dominant mechanism of current transport, due presumably to the low carrier density in CdTe.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.335515</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof J. Appl. Phys.; (United States), 1985-12, Vol.58 (11), p.4296-4299
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_335515
source AIP Digital Archive
subjects 420800 - Engineering- Electronic Circuits & Devices- (-1989)
ALUMINIUM
ANNEALING
Applied sciences
BROMINE
CADMIUM COMPOUNDS
CADMIUM TELLURIDES
CHALCOGENIDES
DATA
DIFFUSION
Diodes
ELECTRIC CONDUCTIVITY
ELECTRIC POTENTIAL
ELECTRICAL PROPERTIES
Electronics
ELEMENTS
ENGINEERING
ETCHING
Exact sciences and technology
EXPERIMENTAL DATA
FABRICATION
HALOGENS
HEAT TREATMENTS
INFORMATION
METALS
NONMETALS
NUMERICAL DATA
PHYSICAL PROPERTIES
POTENTIALS
SCHOTTKY BARRIER DIODES
SEMICONDUCTOR DEVICES
SEMICONDUCTOR DIODES
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
STOICHIOMETRY
SURFACE FINISHING
TELLURIDES
TELLURIUM COMPOUNDS
TUNNEL EFFECT
title Properties of Al/p-CdTe schottky barriers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20Al/p-CdTe%20schottky%20barriers&rft.jtitle=J.%20Appl.%20Phys.;%20(United%20States)&rft.au=CHU,%20T.%20L&rft.aucorp=Southern%20Methodist%20University,%20Dallas,%20Texas%2075275&rft.date=1985-12-01&rft.volume=58&rft.issue=11&rft.spage=4296&rft.epage=4299&rft.pages=4296-4299&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.335515&rft_dat=%3Cpascalfrancis_osti_%3E8717669%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true