Properties of Al/p-CdTe schottky barriers
Al/p-CdTe Schottky barriers diodes were prepared from the Te (1̄1̄1̄) face of lightly doped p-type CdTe single crystals. The characteristics of the diodes have been found to depend strongly on the surface preparation of CdTe. The current-voltage characteristics of diodes prepared from Br2-CH3OH etch...
Gespeichert in:
Veröffentlicht in: | J. Appl. Phys.; (United States) 1985-12, Vol.58 (11), p.4296-4299 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4299 |
---|---|
container_issue | 11 |
container_start_page | 4296 |
container_title | J. Appl. Phys.; (United States) |
container_volume | 58 |
creator | CHU, T. L CHU, S. S ANG, S. T |
description | Al/p-CdTe Schottky barriers diodes were prepared from the Te (1̄1̄1̄) face of lightly doped p-type CdTe single crystals. The characteristics of the diodes have been found to depend strongly on the surface preparation of CdTe. The current-voltage characteristics of diodes prepared from Br2-CH3OH etched surfaces are dominated by the tunneling mechanism with high saturation current densities. The use of Br2-CH3OH etch followed by heating in hydrogen has pronounced effects on the diode quality factor and saturation current densities due to the restoration of the surface stoichiometry. The C-V measurements at 1 and 10 MHz indicate that Schottky diodes prepared from Br2-CH3OH etched and 450 °C hydrogen-annealed CdTe have a barrier height of 0.76 V and that diodes prepared from Br2-CH3OH etched or lower-temperature hydrogen-annealed CdTe show larger barrier heights. In latter cases, the barrier height appears to be controlled by the metal-semiconductor interface states. In Al/p-CdTe Schottky barriers with low interface state density, the temperature dependence of the saturation current density suggests that diffusion is the dominant mechanism of current transport, due presumably to the low carrier density in CdTe. |
doi_str_mv | 10.1063/1.335515 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_335515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>8717669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-2d298419a80bf9aa613997595c9becc9c976114650e097814521063966425cfa3</originalsourceid><addsrcrecordid>eNo90EtLw0AUBeBBFIxV8CcEcaGLtHMzmcddluALCrqo62FyO6HRmISZ2fTf2xJxdTYfh8Nh7Bb4ErgSK1gKISXIM5YBN1hoKfk5yzgvoTCo8ZJdxfjFOYARmLHHjzBOPqTOx3xs83W_mop6t_V5pP2Y0vchb1wInQ_xml20ro_-5i8X7PP5aVu_Fpv3l7d6vSlIVDoV5a5EUwE6w5sWnVMgELVESdh4IiTUCqBSknuO2kAly9NuVKoqJbVOLNjd3DvG1NlIXfK0p3EYPCWrSkQlqiN6mBGFMcbgWzuF7seFgwVuT30W7PzDkd7PdHKRXN8GN1AX_73RoJVC8QsQCVh8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Properties of Al/p-CdTe schottky barriers</title><source>AIP Digital Archive</source><creator>CHU, T. L ; CHU, S. S ; ANG, S. T</creator><creatorcontrib>CHU, T. L ; CHU, S. S ; ANG, S. T ; Southern Methodist University, Dallas, Texas 75275</creatorcontrib><description>Al/p-CdTe Schottky barriers diodes were prepared from the Te (1̄1̄1̄) face of lightly doped p-type CdTe single crystals. The characteristics of the diodes have been found to depend strongly on the surface preparation of CdTe. The current-voltage characteristics of diodes prepared from Br2-CH3OH etched surfaces are dominated by the tunneling mechanism with high saturation current densities. The use of Br2-CH3OH etch followed by heating in hydrogen has pronounced effects on the diode quality factor and saturation current densities due to the restoration of the surface stoichiometry. The C-V measurements at 1 and 10 MHz indicate that Schottky diodes prepared from Br2-CH3OH etched and 450 °C hydrogen-annealed CdTe have a barrier height of 0.76 V and that diodes prepared from Br2-CH3OH etched or lower-temperature hydrogen-annealed CdTe show larger barrier heights. In latter cases, the barrier height appears to be controlled by the metal-semiconductor interface states. In Al/p-CdTe Schottky barriers with low interface state density, the temperature dependence of the saturation current density suggests that diffusion is the dominant mechanism of current transport, due presumably to the low carrier density in CdTe.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.335515</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>420800 - Engineering- Electronic Circuits & Devices- (-1989) ; ALUMINIUM ; ANNEALING ; Applied sciences ; BROMINE ; CADMIUM COMPOUNDS ; CADMIUM TELLURIDES ; CHALCOGENIDES ; DATA ; DIFFUSION ; Diodes ; ELECTRIC CONDUCTIVITY ; ELECTRIC POTENTIAL ; ELECTRICAL PROPERTIES ; Electronics ; ELEMENTS ; ENGINEERING ; ETCHING ; Exact sciences and technology ; EXPERIMENTAL DATA ; FABRICATION ; HALOGENS ; HEAT TREATMENTS ; INFORMATION ; METALS ; NONMETALS ; NUMERICAL DATA ; PHYSICAL PROPERTIES ; POTENTIALS ; SCHOTTKY BARRIER DIODES ; SEMICONDUCTOR DEVICES ; SEMICONDUCTOR DIODES ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; STOICHIOMETRY ; SURFACE FINISHING ; TELLURIDES ; TELLURIUM COMPOUNDS ; TUNNEL EFFECT</subject><ispartof>J. Appl. Phys.; (United States), 1985-12, Vol.58 (11), p.4296-4299</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-2d298419a80bf9aa613997595c9becc9c976114650e097814521063966425cfa3</citedby><cites>FETCH-LOGICAL-c347t-2d298419a80bf9aa613997595c9becc9c976114650e097814521063966425cfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8717669$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6299634$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>CHU, T. L</creatorcontrib><creatorcontrib>CHU, S. S</creatorcontrib><creatorcontrib>ANG, S. T</creatorcontrib><creatorcontrib>Southern Methodist University, Dallas, Texas 75275</creatorcontrib><title>Properties of Al/p-CdTe schottky barriers</title><title>J. Appl. Phys.; (United States)</title><description>Al/p-CdTe Schottky barriers diodes were prepared from the Te (1̄1̄1̄) face of lightly doped p-type CdTe single crystals. The characteristics of the diodes have been found to depend strongly on the surface preparation of CdTe. The current-voltage characteristics of diodes prepared from Br2-CH3OH etched surfaces are dominated by the tunneling mechanism with high saturation current densities. The use of Br2-CH3OH etch followed by heating in hydrogen has pronounced effects on the diode quality factor and saturation current densities due to the restoration of the surface stoichiometry. The C-V measurements at 1 and 10 MHz indicate that Schottky diodes prepared from Br2-CH3OH etched and 450 °C hydrogen-annealed CdTe have a barrier height of 0.76 V and that diodes prepared from Br2-CH3OH etched or lower-temperature hydrogen-annealed CdTe show larger barrier heights. In latter cases, the barrier height appears to be controlled by the metal-semiconductor interface states. In Al/p-CdTe Schottky barriers with low interface state density, the temperature dependence of the saturation current density suggests that diffusion is the dominant mechanism of current transport, due presumably to the low carrier density in CdTe.</description><subject>420800 - Engineering- Electronic Circuits & Devices- (-1989)</subject><subject>ALUMINIUM</subject><subject>ANNEALING</subject><subject>Applied sciences</subject><subject>BROMINE</subject><subject>CADMIUM COMPOUNDS</subject><subject>CADMIUM TELLURIDES</subject><subject>CHALCOGENIDES</subject><subject>DATA</subject><subject>DIFFUSION</subject><subject>Diodes</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>ELECTRIC POTENTIAL</subject><subject>ELECTRICAL PROPERTIES</subject><subject>Electronics</subject><subject>ELEMENTS</subject><subject>ENGINEERING</subject><subject>ETCHING</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>FABRICATION</subject><subject>HALOGENS</subject><subject>HEAT TREATMENTS</subject><subject>INFORMATION</subject><subject>METALS</subject><subject>NONMETALS</subject><subject>NUMERICAL DATA</subject><subject>PHYSICAL PROPERTIES</subject><subject>POTENTIALS</subject><subject>SCHOTTKY BARRIER DIODES</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SEMICONDUCTOR DIODES</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>STOICHIOMETRY</subject><subject>SURFACE FINISHING</subject><subject>TELLURIDES</subject><subject>TELLURIUM COMPOUNDS</subject><subject>TUNNEL EFFECT</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNo90EtLw0AUBeBBFIxV8CcEcaGLtHMzmcddluALCrqo62FyO6HRmISZ2fTf2xJxdTYfh8Nh7Bb4ErgSK1gKISXIM5YBN1hoKfk5yzgvoTCo8ZJdxfjFOYARmLHHjzBOPqTOx3xs83W_mop6t_V5pP2Y0vchb1wInQ_xml20ro_-5i8X7PP5aVu_Fpv3l7d6vSlIVDoV5a5EUwE6w5sWnVMgELVESdh4IiTUCqBSknuO2kAly9NuVKoqJbVOLNjd3DvG1NlIXfK0p3EYPCWrSkQlqiN6mBGFMcbgWzuF7seFgwVuT30W7PzDkd7PdHKRXN8GN1AX_73RoJVC8QsQCVh8</recordid><startdate>19851201</startdate><enddate>19851201</enddate><creator>CHU, T. L</creator><creator>CHU, S. S</creator><creator>ANG, S. T</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19851201</creationdate><title>Properties of Al/p-CdTe schottky barriers</title><author>CHU, T. L ; CHU, S. S ; ANG, S. T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-2d298419a80bf9aa613997595c9becc9c976114650e097814521063966425cfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>420800 - Engineering- Electronic Circuits & Devices- (-1989)</topic><topic>ALUMINIUM</topic><topic>ANNEALING</topic><topic>Applied sciences</topic><topic>BROMINE</topic><topic>CADMIUM COMPOUNDS</topic><topic>CADMIUM TELLURIDES</topic><topic>CHALCOGENIDES</topic><topic>DATA</topic><topic>DIFFUSION</topic><topic>Diodes</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>ELECTRIC POTENTIAL</topic><topic>ELECTRICAL PROPERTIES</topic><topic>Electronics</topic><topic>ELEMENTS</topic><topic>ENGINEERING</topic><topic>ETCHING</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>FABRICATION</topic><topic>HALOGENS</topic><topic>HEAT TREATMENTS</topic><topic>INFORMATION</topic><topic>METALS</topic><topic>NONMETALS</topic><topic>NUMERICAL DATA</topic><topic>PHYSICAL PROPERTIES</topic><topic>POTENTIALS</topic><topic>SCHOTTKY BARRIER DIODES</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SEMICONDUCTOR DIODES</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>STOICHIOMETRY</topic><topic>SURFACE FINISHING</topic><topic>TELLURIDES</topic><topic>TELLURIUM COMPOUNDS</topic><topic>TUNNEL EFFECT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHU, T. L</creatorcontrib><creatorcontrib>CHU, S. S</creatorcontrib><creatorcontrib>ANG, S. T</creatorcontrib><creatorcontrib>Southern Methodist University, Dallas, Texas 75275</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Appl. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHU, T. L</au><au>CHU, S. S</au><au>ANG, S. T</au><aucorp>Southern Methodist University, Dallas, Texas 75275</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of Al/p-CdTe schottky barriers</atitle><jtitle>J. Appl. Phys.; (United States)</jtitle><date>1985-12-01</date><risdate>1985</risdate><volume>58</volume><issue>11</issue><spage>4296</spage><epage>4299</epage><pages>4296-4299</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Al/p-CdTe Schottky barriers diodes were prepared from the Te (1̄1̄1̄) face of lightly doped p-type CdTe single crystals. The characteristics of the diodes have been found to depend strongly on the surface preparation of CdTe. The current-voltage characteristics of diodes prepared from Br2-CH3OH etched surfaces are dominated by the tunneling mechanism with high saturation current densities. The use of Br2-CH3OH etch followed by heating in hydrogen has pronounced effects on the diode quality factor and saturation current densities due to the restoration of the surface stoichiometry. The C-V measurements at 1 and 10 MHz indicate that Schottky diodes prepared from Br2-CH3OH etched and 450 °C hydrogen-annealed CdTe have a barrier height of 0.76 V and that diodes prepared from Br2-CH3OH etched or lower-temperature hydrogen-annealed CdTe show larger barrier heights. In latter cases, the barrier height appears to be controlled by the metal-semiconductor interface states. In Al/p-CdTe Schottky barriers with low interface state density, the temperature dependence of the saturation current density suggests that diffusion is the dominant mechanism of current transport, due presumably to the low carrier density in CdTe.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.335515</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | J. Appl. Phys.; (United States), 1985-12, Vol.58 (11), p.4296-4299 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_335515 |
source | AIP Digital Archive |
subjects | 420800 - Engineering- Electronic Circuits & Devices- (-1989) ALUMINIUM ANNEALING Applied sciences BROMINE CADMIUM COMPOUNDS CADMIUM TELLURIDES CHALCOGENIDES DATA DIFFUSION Diodes ELECTRIC CONDUCTIVITY ELECTRIC POTENTIAL ELECTRICAL PROPERTIES Electronics ELEMENTS ENGINEERING ETCHING Exact sciences and technology EXPERIMENTAL DATA FABRICATION HALOGENS HEAT TREATMENTS INFORMATION METALS NONMETALS NUMERICAL DATA PHYSICAL PROPERTIES POTENTIALS SCHOTTKY BARRIER DIODES SEMICONDUCTOR DEVICES SEMICONDUCTOR DIODES Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices STOICHIOMETRY SURFACE FINISHING TELLURIDES TELLURIUM COMPOUNDS TUNNEL EFFECT |
title | Properties of Al/p-CdTe schottky barriers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20Al/p-CdTe%20schottky%20barriers&rft.jtitle=J.%20Appl.%20Phys.;%20(United%20States)&rft.au=CHU,%20T.%20L&rft.aucorp=Southern%20Methodist%20University,%20Dallas,%20Texas%2075275&rft.date=1985-12-01&rft.volume=58&rft.issue=11&rft.spage=4296&rft.epage=4299&rft.pages=4296-4299&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.335515&rft_dat=%3Cpascalfrancis_osti_%3E8717669%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |