Generation of negative ions in tandem high-density hydrogen discharges
An optimized tandem two-chamber negative-ion source system is discussed. In the first chamber high-energy (E>20 eV) electron collisions provide for H2 vibrational excitation, while in the second chamber negative ions are formed by dissociative attachment. The gas density, electron density, and sy...
Gespeichert in:
Veröffentlicht in: | J. Appl. Phys.; (United States) 1984-10, Vol.56 (7), p.1927-1938 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1938 |
---|---|
container_issue | 7 |
container_start_page | 1927 |
container_title | J. Appl. Phys.; (United States) |
container_volume | 56 |
creator | HISKES, J. R KARO, A. M |
description | An optimized tandem two-chamber negative-ion source system is discussed. In the first chamber high-energy (E>20 eV) electron collisions provide for H2 vibrational excitation, while in the second chamber negative ions are formed by dissociative attachment. The gas density, electron density, and system scale length are varied as independent parameters. The extracted negative ion current density passes through a maximum as electron and gas densities are varied. This maximum scales inversely with system scale length R. The optimum extracted current densities occur for electron densities nR=1013 electrons cm−2 and gas densities N2R in the range 1014–1015 molecules cm−2. The extracted current densities are sensitive to the atomic concentration in the discharge. The atomic concentration is parametrized by the wall recombination coefficient γ and scale length R. As γ ranges from 0.1 to 1.0 and for system scale lengths of 1 cm, extracted current densities range from 8.0 to 80 mA cm−2. The relative negative-ion yields from single-chamber and tandem two-chamber systems are compared. Estimates are made for the rates of polar dissociation of H2 molecules and H+3 ions, and these rates are compared with the dissociative attachment rates. |
doi_str_mv | 10.1063/1.334237 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_334237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9061079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-eb4ed3f95b4675554d4e133d34d826b6f5200c87b23391967f620d59e13a92093</originalsourceid><addsrcrecordid>eNo90MFKxDAQBuAgCq6r4CME8eCl6ySTps1RFl2FBS96Lmky3UZ20yUpwr69lYqnmYGPn-Fn7FbASoDGR7FCVBKrM7YQUJuiKks4ZwsAKYraVOaSXeX8BSBEjWbBXjYUKdkxDJEPHY-0m_Zv4tOdeYh8tNHTgfdh1xeeYg7jifcnn4YdRe5Ddr1NO8rX7KKz-0w3f3PJPl-eP9avxfZ987Z-2hYOVTUW1Cry2JmyVXp6rFRekUD0qHwtdau7UgK4umolohFGV52W4EszIWskGFyyuzl3yGNosgsjud4NMZIbG10qKRAm9DAjl4acE3XNMYWDTadGQPNbUiOauaSJ3s_0aLOz-y7Z6EL-9wa0gMrgD9CHZCU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generation of negative ions in tandem high-density hydrogen discharges</title><source>AIP Digital Archive</source><creator>HISKES, J. R ; KARO, A. M</creator><creatorcontrib>HISKES, J. R ; KARO, A. M ; Lawrence Livermore National Laboratory, Livermore, California 94550</creatorcontrib><description>An optimized tandem two-chamber negative-ion source system is discussed. In the first chamber high-energy (E>20 eV) electron collisions provide for H2 vibrational excitation, while in the second chamber negative ions are formed by dissociative attachment. The gas density, electron density, and system scale length are varied as independent parameters. The extracted negative ion current density passes through a maximum as electron and gas densities are varied. This maximum scales inversely with system scale length R. The optimum extracted current densities occur for electron densities nR=1013 electrons cm−2 and gas densities N2R in the range 1014–1015 molecules cm−2. The extracted current densities are sensitive to the atomic concentration in the discharge. The atomic concentration is parametrized by the wall recombination coefficient γ and scale length R. As γ ranges from 0.1 to 1.0 and for system scale lengths of 1 cm, extracted current densities range from 8.0 to 80 mA cm−2. The relative negative-ion yields from single-chamber and tandem two-chamber systems are compared. Estimates are made for the rates of polar dissociation of H2 molecules and H+3 ions, and these rates are compared with the dissociative attachment rates.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.334237</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>640301 - Atomic, Molecular & Chemical Physics- Beams & their Reactions ; BEAM PRODUCTION ; BEAMS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COLLISIONS ; CURRENT DENSITY ; DESIGN ; DISSOCIATION ; ELECTRIC DISCHARGES ; ELECTRON COLLISIONS ; ELECTRON DENSITY ; ELEMENTS ; ENERGY LEVELS ; ENERGY-LEVEL TRANSITIONS ; Exact sciences and technology ; EXCITATION ; EXCITED STATES ; FABRICATION ; HYDROGEN ; HYDROGEN 1 MINUS BEAMS ; ION BEAMS ; ION SOURCES ; NONMETALS ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; VIBRATIONAL STATES</subject><ispartof>J. Appl. Phys.; (United States), 1984-10, Vol.56 (7), p.1927-1938</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-eb4ed3f95b4675554d4e133d34d826b6f5200c87b23391967f620d59e13a92093</citedby><cites>FETCH-LOGICAL-c347t-eb4ed3f95b4675554d4e133d34d826b6f5200c87b23391967f620d59e13a92093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9061079$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6542130$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>HISKES, J. R</creatorcontrib><creatorcontrib>KARO, A. M</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory, Livermore, California 94550</creatorcontrib><title>Generation of negative ions in tandem high-density hydrogen discharges</title><title>J. Appl. Phys.; (United States)</title><description>An optimized tandem two-chamber negative-ion source system is discussed. In the first chamber high-energy (E>20 eV) electron collisions provide for H2 vibrational excitation, while in the second chamber negative ions are formed by dissociative attachment. The gas density, electron density, and system scale length are varied as independent parameters. The extracted negative ion current density passes through a maximum as electron and gas densities are varied. This maximum scales inversely with system scale length R. The optimum extracted current densities occur for electron densities nR=1013 electrons cm−2 and gas densities N2R in the range 1014–1015 molecules cm−2. The extracted current densities are sensitive to the atomic concentration in the discharge. The atomic concentration is parametrized by the wall recombination coefficient γ and scale length R. As γ ranges from 0.1 to 1.0 and for system scale lengths of 1 cm, extracted current densities range from 8.0 to 80 mA cm−2. The relative negative-ion yields from single-chamber and tandem two-chamber systems are compared. Estimates are made for the rates of polar dissociation of H2 molecules and H+3 ions, and these rates are compared with the dissociative attachment rates.</description><subject>640301 - Atomic, Molecular & Chemical Physics- Beams & their Reactions</subject><subject>BEAM PRODUCTION</subject><subject>BEAMS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COLLISIONS</subject><subject>CURRENT DENSITY</subject><subject>DESIGN</subject><subject>DISSOCIATION</subject><subject>ELECTRIC DISCHARGES</subject><subject>ELECTRON COLLISIONS</subject><subject>ELECTRON DENSITY</subject><subject>ELEMENTS</subject><subject>ENERGY LEVELS</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>Exact sciences and technology</subject><subject>EXCITATION</subject><subject>EXCITED STATES</subject><subject>FABRICATION</subject><subject>HYDROGEN</subject><subject>HYDROGEN 1 MINUS BEAMS</subject><subject>ION BEAMS</subject><subject>ION SOURCES</subject><subject>NONMETALS</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>VIBRATIONAL STATES</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNo90MFKxDAQBuAgCq6r4CME8eCl6ySTps1RFl2FBS96Lmky3UZ20yUpwr69lYqnmYGPn-Fn7FbASoDGR7FCVBKrM7YQUJuiKks4ZwsAKYraVOaSXeX8BSBEjWbBXjYUKdkxDJEPHY-0m_Zv4tOdeYh8tNHTgfdh1xeeYg7jifcnn4YdRe5Ddr1NO8rX7KKz-0w3f3PJPl-eP9avxfZ987Z-2hYOVTUW1Cry2JmyVXp6rFRekUD0qHwtdau7UgK4umolohFGV52W4EszIWskGFyyuzl3yGNosgsjud4NMZIbG10qKRAm9DAjl4acE3XNMYWDTadGQPNbUiOauaSJ3s_0aLOz-y7Z6EL-9wa0gMrgD9CHZCU</recordid><startdate>19841001</startdate><enddate>19841001</enddate><creator>HISKES, J. R</creator><creator>KARO, A. M</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19841001</creationdate><title>Generation of negative ions in tandem high-density hydrogen discharges</title><author>HISKES, J. R ; KARO, A. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-eb4ed3f95b4675554d4e133d34d826b6f5200c87b23391967f620d59e13a92093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>640301 - Atomic, Molecular & Chemical Physics- Beams & their Reactions</topic><topic>BEAM PRODUCTION</topic><topic>BEAMS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COLLISIONS</topic><topic>CURRENT DENSITY</topic><topic>DESIGN</topic><topic>DISSOCIATION</topic><topic>ELECTRIC DISCHARGES</topic><topic>ELECTRON COLLISIONS</topic><topic>ELECTRON DENSITY</topic><topic>ELEMENTS</topic><topic>ENERGY LEVELS</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>Exact sciences and technology</topic><topic>EXCITATION</topic><topic>EXCITED STATES</topic><topic>FABRICATION</topic><topic>HYDROGEN</topic><topic>HYDROGEN 1 MINUS BEAMS</topic><topic>ION BEAMS</topic><topic>ION SOURCES</topic><topic>NONMETALS</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>VIBRATIONAL STATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HISKES, J. R</creatorcontrib><creatorcontrib>KARO, A. M</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory, Livermore, California 94550</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Appl. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HISKES, J. R</au><au>KARO, A. M</au><aucorp>Lawrence Livermore National Laboratory, Livermore, California 94550</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of negative ions in tandem high-density hydrogen discharges</atitle><jtitle>J. Appl. Phys.; (United States)</jtitle><date>1984-10-01</date><risdate>1984</risdate><volume>56</volume><issue>7</issue><spage>1927</spage><epage>1938</epage><pages>1927-1938</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>An optimized tandem two-chamber negative-ion source system is discussed. In the first chamber high-energy (E>20 eV) electron collisions provide for H2 vibrational excitation, while in the second chamber negative ions are formed by dissociative attachment. The gas density, electron density, and system scale length are varied as independent parameters. The extracted negative ion current density passes through a maximum as electron and gas densities are varied. This maximum scales inversely with system scale length R. The optimum extracted current densities occur for electron densities nR=1013 electrons cm−2 and gas densities N2R in the range 1014–1015 molecules cm−2. The extracted current densities are sensitive to the atomic concentration in the discharge. The atomic concentration is parametrized by the wall recombination coefficient γ and scale length R. As γ ranges from 0.1 to 1.0 and for system scale lengths of 1 cm, extracted current densities range from 8.0 to 80 mA cm−2. The relative negative-ion yields from single-chamber and tandem two-chamber systems are compared. Estimates are made for the rates of polar dissociation of H2 molecules and H+3 ions, and these rates are compared with the dissociative attachment rates.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.334237</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | J. Appl. Phys.; (United States), 1984-10, Vol.56 (7), p.1927-1938 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_334237 |
source | AIP Digital Archive |
subjects | 640301 - Atomic, Molecular & Chemical Physics- Beams & their Reactions BEAM PRODUCTION BEAMS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COLLISIONS CURRENT DENSITY DESIGN DISSOCIATION ELECTRIC DISCHARGES ELECTRON COLLISIONS ELECTRON DENSITY ELEMENTS ENERGY LEVELS ENERGY-LEVEL TRANSITIONS Exact sciences and technology EXCITATION EXCITED STATES FABRICATION HYDROGEN HYDROGEN 1 MINUS BEAMS ION BEAMS ION SOURCES NONMETALS Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges VIBRATIONAL STATES |
title | Generation of negative ions in tandem high-density hydrogen discharges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20negative%20ions%20in%20tandem%20high-density%20hydrogen%20discharges&rft.jtitle=J.%20Appl.%20Phys.;%20(United%20States)&rft.au=HISKES,%20J.%20R&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory,%20Livermore,%20California%2094550&rft.date=1984-10-01&rft.volume=56&rft.issue=7&rft.spage=1927&rft.epage=1938&rft.pages=1927-1938&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.334237&rft_dat=%3Cpascalfrancis_osti_%3E9061079%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |