Generation of negative ions in tandem high-density hydrogen discharges

An optimized tandem two-chamber negative-ion source system is discussed. In the first chamber high-energy (E>20 eV) electron collisions provide for H2 vibrational excitation, while in the second chamber negative ions are formed by dissociative attachment. The gas density, electron density, and sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Appl. Phys.; (United States) 1984-10, Vol.56 (7), p.1927-1938
Hauptverfasser: HISKES, J. R, KARO, A. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1938
container_issue 7
container_start_page 1927
container_title J. Appl. Phys.; (United States)
container_volume 56
creator HISKES, J. R
KARO, A. M
description An optimized tandem two-chamber negative-ion source system is discussed. In the first chamber high-energy (E>20 eV) electron collisions provide for H2 vibrational excitation, while in the second chamber negative ions are formed by dissociative attachment. The gas density, electron density, and system scale length are varied as independent parameters. The extracted negative ion current density passes through a maximum as electron and gas densities are varied. This maximum scales inversely with system scale length R. The optimum extracted current densities occur for electron densities nR=1013 electrons cm−2 and gas densities N2R in the range 1014–1015 molecules cm−2. The extracted current densities are sensitive to the atomic concentration in the discharge. The atomic concentration is parametrized by the wall recombination coefficient γ and scale length R. As γ ranges from 0.1 to 1.0 and for system scale lengths of 1 cm, extracted current densities range from 8.0 to 80 mA cm−2. The relative negative-ion yields from single-chamber and tandem two-chamber systems are compared. Estimates are made for the rates of polar dissociation of H2 molecules and H+3 ions, and these rates are compared with the dissociative attachment rates.
doi_str_mv 10.1063/1.334237
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_334237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>9061079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-eb4ed3f95b4675554d4e133d34d826b6f5200c87b23391967f620d59e13a92093</originalsourceid><addsrcrecordid>eNo90MFKxDAQBuAgCq6r4CME8eCl6ySTps1RFl2FBS96Lmky3UZ20yUpwr69lYqnmYGPn-Fn7FbASoDGR7FCVBKrM7YQUJuiKks4ZwsAKYraVOaSXeX8BSBEjWbBXjYUKdkxDJEPHY-0m_Zv4tOdeYh8tNHTgfdh1xeeYg7jifcnn4YdRe5Ddr1NO8rX7KKz-0w3f3PJPl-eP9avxfZ987Z-2hYOVTUW1Cry2JmyVXp6rFRekUD0qHwtdau7UgK4umolohFGV52W4EszIWskGFyyuzl3yGNosgsjud4NMZIbG10qKRAm9DAjl4acE3XNMYWDTadGQPNbUiOauaSJ3s_0aLOz-y7Z6EL-9wa0gMrgD9CHZCU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generation of negative ions in tandem high-density hydrogen discharges</title><source>AIP Digital Archive</source><creator>HISKES, J. R ; KARO, A. M</creator><creatorcontrib>HISKES, J. R ; KARO, A. M ; Lawrence Livermore National Laboratory, Livermore, California 94550</creatorcontrib><description>An optimized tandem two-chamber negative-ion source system is discussed. In the first chamber high-energy (E&gt;20 eV) electron collisions provide for H2 vibrational excitation, while in the second chamber negative ions are formed by dissociative attachment. The gas density, electron density, and system scale length are varied as independent parameters. The extracted negative ion current density passes through a maximum as electron and gas densities are varied. This maximum scales inversely with system scale length R. The optimum extracted current densities occur for electron densities nR=1013 electrons cm−2 and gas densities N2R in the range 1014–1015 molecules cm−2. The extracted current densities are sensitive to the atomic concentration in the discharge. The atomic concentration is parametrized by the wall recombination coefficient γ and scale length R. As γ ranges from 0.1 to 1.0 and for system scale lengths of 1 cm, extracted current densities range from 8.0 to 80 mA cm−2. The relative negative-ion yields from single-chamber and tandem two-chamber systems are compared. Estimates are made for the rates of polar dissociation of H2 molecules and H+3 ions, and these rates are compared with the dissociative attachment rates.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.334237</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Woodbury, NY: American Institute of Physics</publisher><subject>640301 - Atomic, Molecular &amp; Chemical Physics- Beams &amp; their Reactions ; BEAM PRODUCTION ; BEAMS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COLLISIONS ; CURRENT DENSITY ; DESIGN ; DISSOCIATION ; ELECTRIC DISCHARGES ; ELECTRON COLLISIONS ; ELECTRON DENSITY ; ELEMENTS ; ENERGY LEVELS ; ENERGY-LEVEL TRANSITIONS ; Exact sciences and technology ; EXCITATION ; EXCITED STATES ; FABRICATION ; HYDROGEN ; HYDROGEN 1 MINUS BEAMS ; ION BEAMS ; ION SOURCES ; NONMETALS ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; VIBRATIONAL STATES</subject><ispartof>J. Appl. Phys.; (United States), 1984-10, Vol.56 (7), p.1927-1938</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-eb4ed3f95b4675554d4e133d34d826b6f5200c87b23391967f620d59e13a92093</citedby><cites>FETCH-LOGICAL-c347t-eb4ed3f95b4675554d4e133d34d826b6f5200c87b23391967f620d59e13a92093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9061079$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6542130$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>HISKES, J. R</creatorcontrib><creatorcontrib>KARO, A. M</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory, Livermore, California 94550</creatorcontrib><title>Generation of negative ions in tandem high-density hydrogen discharges</title><title>J. Appl. Phys.; (United States)</title><description>An optimized tandem two-chamber negative-ion source system is discussed. In the first chamber high-energy (E&gt;20 eV) electron collisions provide for H2 vibrational excitation, while in the second chamber negative ions are formed by dissociative attachment. The gas density, electron density, and system scale length are varied as independent parameters. The extracted negative ion current density passes through a maximum as electron and gas densities are varied. This maximum scales inversely with system scale length R. The optimum extracted current densities occur for electron densities nR=1013 electrons cm−2 and gas densities N2R in the range 1014–1015 molecules cm−2. The extracted current densities are sensitive to the atomic concentration in the discharge. The atomic concentration is parametrized by the wall recombination coefficient γ and scale length R. As γ ranges from 0.1 to 1.0 and for system scale lengths of 1 cm, extracted current densities range from 8.0 to 80 mA cm−2. The relative negative-ion yields from single-chamber and tandem two-chamber systems are compared. Estimates are made for the rates of polar dissociation of H2 molecules and H+3 ions, and these rates are compared with the dissociative attachment rates.</description><subject>640301 - Atomic, Molecular &amp; Chemical Physics- Beams &amp; their Reactions</subject><subject>BEAM PRODUCTION</subject><subject>BEAMS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COLLISIONS</subject><subject>CURRENT DENSITY</subject><subject>DESIGN</subject><subject>DISSOCIATION</subject><subject>ELECTRIC DISCHARGES</subject><subject>ELECTRON COLLISIONS</subject><subject>ELECTRON DENSITY</subject><subject>ELEMENTS</subject><subject>ENERGY LEVELS</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>Exact sciences and technology</subject><subject>EXCITATION</subject><subject>EXCITED STATES</subject><subject>FABRICATION</subject><subject>HYDROGEN</subject><subject>HYDROGEN 1 MINUS BEAMS</subject><subject>ION BEAMS</subject><subject>ION SOURCES</subject><subject>NONMETALS</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>VIBRATIONAL STATES</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNo90MFKxDAQBuAgCq6r4CME8eCl6ySTps1RFl2FBS96Lmky3UZ20yUpwr69lYqnmYGPn-Fn7FbASoDGR7FCVBKrM7YQUJuiKks4ZwsAKYraVOaSXeX8BSBEjWbBXjYUKdkxDJEPHY-0m_Zv4tOdeYh8tNHTgfdh1xeeYg7jifcnn4YdRe5Ddr1NO8rX7KKz-0w3f3PJPl-eP9avxfZ987Z-2hYOVTUW1Cry2JmyVXp6rFRekUD0qHwtdau7UgK4umolohFGV52W4EszIWskGFyyuzl3yGNosgsjud4NMZIbG10qKRAm9DAjl4acE3XNMYWDTadGQPNbUiOauaSJ3s_0aLOz-y7Z6EL-9wa0gMrgD9CHZCU</recordid><startdate>19841001</startdate><enddate>19841001</enddate><creator>HISKES, J. R</creator><creator>KARO, A. M</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19841001</creationdate><title>Generation of negative ions in tandem high-density hydrogen discharges</title><author>HISKES, J. R ; KARO, A. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-eb4ed3f95b4675554d4e133d34d826b6f5200c87b23391967f620d59e13a92093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>640301 - Atomic, Molecular &amp; Chemical Physics- Beams &amp; their Reactions</topic><topic>BEAM PRODUCTION</topic><topic>BEAMS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COLLISIONS</topic><topic>CURRENT DENSITY</topic><topic>DESIGN</topic><topic>DISSOCIATION</topic><topic>ELECTRIC DISCHARGES</topic><topic>ELECTRON COLLISIONS</topic><topic>ELECTRON DENSITY</topic><topic>ELEMENTS</topic><topic>ENERGY LEVELS</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>Exact sciences and technology</topic><topic>EXCITATION</topic><topic>EXCITED STATES</topic><topic>FABRICATION</topic><topic>HYDROGEN</topic><topic>HYDROGEN 1 MINUS BEAMS</topic><topic>ION BEAMS</topic><topic>ION SOURCES</topic><topic>NONMETALS</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>VIBRATIONAL STATES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HISKES, J. R</creatorcontrib><creatorcontrib>KARO, A. M</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory, Livermore, California 94550</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Appl. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HISKES, J. R</au><au>KARO, A. M</au><aucorp>Lawrence Livermore National Laboratory, Livermore, California 94550</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of negative ions in tandem high-density hydrogen discharges</atitle><jtitle>J. Appl. Phys.; (United States)</jtitle><date>1984-10-01</date><risdate>1984</risdate><volume>56</volume><issue>7</issue><spage>1927</spage><epage>1938</epage><pages>1927-1938</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>An optimized tandem two-chamber negative-ion source system is discussed. In the first chamber high-energy (E&gt;20 eV) electron collisions provide for H2 vibrational excitation, while in the second chamber negative ions are formed by dissociative attachment. The gas density, electron density, and system scale length are varied as independent parameters. The extracted negative ion current density passes through a maximum as electron and gas densities are varied. This maximum scales inversely with system scale length R. The optimum extracted current densities occur for electron densities nR=1013 electrons cm−2 and gas densities N2R in the range 1014–1015 molecules cm−2. The extracted current densities are sensitive to the atomic concentration in the discharge. The atomic concentration is parametrized by the wall recombination coefficient γ and scale length R. As γ ranges from 0.1 to 1.0 and for system scale lengths of 1 cm, extracted current densities range from 8.0 to 80 mA cm−2. The relative negative-ion yields from single-chamber and tandem two-chamber systems are compared. Estimates are made for the rates of polar dissociation of H2 molecules and H+3 ions, and these rates are compared with the dissociative attachment rates.</abstract><cop>Woodbury, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.334237</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof J. Appl. Phys.; (United States), 1984-10, Vol.56 (7), p.1927-1938
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_334237
source AIP Digital Archive
subjects 640301 - Atomic, Molecular & Chemical Physics- Beams & their Reactions
BEAM PRODUCTION
BEAMS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COLLISIONS
CURRENT DENSITY
DESIGN
DISSOCIATION
ELECTRIC DISCHARGES
ELECTRON COLLISIONS
ELECTRON DENSITY
ELEMENTS
ENERGY LEVELS
ENERGY-LEVEL TRANSITIONS
Exact sciences and technology
EXCITATION
EXCITED STATES
FABRICATION
HYDROGEN
HYDROGEN 1 MINUS BEAMS
ION BEAMS
ION SOURCES
NONMETALS
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
VIBRATIONAL STATES
title Generation of negative ions in tandem high-density hydrogen discharges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T03%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20negative%20ions%20in%20tandem%20high-density%20hydrogen%20discharges&rft.jtitle=J.%20Appl.%20Phys.;%20(United%20States)&rft.au=HISKES,%20J.%20R&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory,%20Livermore,%20California%2094550&rft.date=1984-10-01&rft.volume=56&rft.issue=7&rft.spage=1927&rft.epage=1938&rft.pages=1927-1938&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.334237&rft_dat=%3Cpascalfrancis_osti_%3E9061079%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true