Particle deposition in a burner

The flame deposition of colloidal silica particles onto a collector has been characterized for a simple, cylindrically symmetric geometry. Material is deposited over a limited area of a disk and the individual particle paths form an inverted cone which can be observed to penetrate the boundary layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1982-01, Vol.53 (8), p.5920-5925
Hauptverfasser: Gourdin, William H., Andrejco, Matthew J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5925
container_issue 8
container_start_page 5920
container_title Journal of applied physics
container_volume 53
creator Gourdin, William H.
Andrejco, Matthew J.
description The flame deposition of colloidal silica particles onto a collector has been characterized for a simple, cylindrically symmetric geometry. Material is deposited over a limited area of a disk and the individual particle paths form an inverted cone which can be observed to penetrate the boundary layer at the disk surface. The paths emanate from a narrow stream confined close to the axis of the flow. A model is proposed to qualitatively explain the collection process and account for observed behavior. This comparatively simple approach apparently contains the essential features of the process. The general form of the deposition is determined by inertial forces on the particles. Impaction, however, is due to forces which result from moderate thermal gradients near the collector surface. A critical radius exists, depending upon conditions of temperature and flow, beyond which deposition does not occur. Although the model provides a generally unsatisfactory description of the flux distribution, it is apparent that the flux will be a maximum off center, resulting in a depression in the center of the collected material. Deposition at the stagnation point is a special case, beyond the scope of this model.
doi_str_mv 10.1063/1.331434
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_331434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_331434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-cc3420b84d1ab837a2fc631a24703f2d59939ae296c46288cf33b72686b7d83f3</originalsourceid><addsrcrecordid>eNotz8tKAzEUgOEgCo5V8A2cpZvUc3IyuSyleINCu9B1SDIJROpMScaFby9SV__uh4-xW4Q1gqIHXBOhJHnGOgRjuR4GOGcdgEBurLaX7Kq1TwBEQ7Zjd3tflxIPqR_TcW5lKfPUl6n3ffiuU6rX7CL7Q0s3_12xj-en980r3-5e3jaPWx6FGBYeI0kBwcgRfTCkvchREXohNVAW42AtWZ-EVVEqYUzMREELZVTQo6FMK3Z_-sY6t1ZTdsdavnz9cQjuD-bQnWD0C51ePYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Particle deposition in a burner</title><source>AIP Digital Archive</source><creator>Gourdin, William H. ; Andrejco, Matthew J.</creator><creatorcontrib>Gourdin, William H. ; Andrejco, Matthew J.</creatorcontrib><description>The flame deposition of colloidal silica particles onto a collector has been characterized for a simple, cylindrically symmetric geometry. Material is deposited over a limited area of a disk and the individual particle paths form an inverted cone which can be observed to penetrate the boundary layer at the disk surface. The paths emanate from a narrow stream confined close to the axis of the flow. A model is proposed to qualitatively explain the collection process and account for observed behavior. This comparatively simple approach apparently contains the essential features of the process. The general form of the deposition is determined by inertial forces on the particles. Impaction, however, is due to forces which result from moderate thermal gradients near the collector surface. A critical radius exists, depending upon conditions of temperature and flow, beyond which deposition does not occur. Although the model provides a generally unsatisfactory description of the flux distribution, it is apparent that the flux will be a maximum off center, resulting in a depression in the center of the collected material. Deposition at the stagnation point is a special case, beyond the scope of this model.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.331434</identifier><language>eng</language><ispartof>Journal of applied physics, 1982-01, Vol.53 (8), p.5920-5925</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-cc3420b84d1ab837a2fc631a24703f2d59939ae296c46288cf33b72686b7d83f3</citedby><cites>FETCH-LOGICAL-c225t-cc3420b84d1ab837a2fc631a24703f2d59939ae296c46288cf33b72686b7d83f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gourdin, William H.</creatorcontrib><creatorcontrib>Andrejco, Matthew J.</creatorcontrib><title>Particle deposition in a burner</title><title>Journal of applied physics</title><description>The flame deposition of colloidal silica particles onto a collector has been characterized for a simple, cylindrically symmetric geometry. Material is deposited over a limited area of a disk and the individual particle paths form an inverted cone which can be observed to penetrate the boundary layer at the disk surface. The paths emanate from a narrow stream confined close to the axis of the flow. A model is proposed to qualitatively explain the collection process and account for observed behavior. This comparatively simple approach apparently contains the essential features of the process. The general form of the deposition is determined by inertial forces on the particles. Impaction, however, is due to forces which result from moderate thermal gradients near the collector surface. A critical radius exists, depending upon conditions of temperature and flow, beyond which deposition does not occur. Although the model provides a generally unsatisfactory description of the flux distribution, it is apparent that the flux will be a maximum off center, resulting in a depression in the center of the collected material. Deposition at the stagnation point is a special case, beyond the scope of this model.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNotz8tKAzEUgOEgCo5V8A2cpZvUc3IyuSyleINCu9B1SDIJROpMScaFby9SV__uh4-xW4Q1gqIHXBOhJHnGOgRjuR4GOGcdgEBurLaX7Kq1TwBEQ7Zjd3tflxIPqR_TcW5lKfPUl6n3ffiuU6rX7CL7Q0s3_12xj-en980r3-5e3jaPWx6FGBYeI0kBwcgRfTCkvchREXohNVAW42AtWZ-EVVEqYUzMREELZVTQo6FMK3Z_-sY6t1ZTdsdavnz9cQjuD-bQnWD0C51ePYM</recordid><startdate>19820101</startdate><enddate>19820101</enddate><creator>Gourdin, William H.</creator><creator>Andrejco, Matthew J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19820101</creationdate><title>Particle deposition in a burner</title><author>Gourdin, William H. ; Andrejco, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-cc3420b84d1ab837a2fc631a24703f2d59939ae296c46288cf33b72686b7d83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gourdin, William H.</creatorcontrib><creatorcontrib>Andrejco, Matthew J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gourdin, William H.</au><au>Andrejco, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle deposition in a burner</atitle><jtitle>Journal of applied physics</jtitle><date>1982-01-01</date><risdate>1982</risdate><volume>53</volume><issue>8</issue><spage>5920</spage><epage>5925</epage><pages>5920-5925</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The flame deposition of colloidal silica particles onto a collector has been characterized for a simple, cylindrically symmetric geometry. Material is deposited over a limited area of a disk and the individual particle paths form an inverted cone which can be observed to penetrate the boundary layer at the disk surface. The paths emanate from a narrow stream confined close to the axis of the flow. A model is proposed to qualitatively explain the collection process and account for observed behavior. This comparatively simple approach apparently contains the essential features of the process. The general form of the deposition is determined by inertial forces on the particles. Impaction, however, is due to forces which result from moderate thermal gradients near the collector surface. A critical radius exists, depending upon conditions of temperature and flow, beyond which deposition does not occur. Although the model provides a generally unsatisfactory description of the flux distribution, it is apparent that the flux will be a maximum off center, resulting in a depression in the center of the collected material. Deposition at the stagnation point is a special case, beyond the scope of this model.</abstract><doi>10.1063/1.331434</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1982-01, Vol.53 (8), p.5920-5925
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_331434
source AIP Digital Archive
title Particle deposition in a burner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20deposition%20in%20a%20burner&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Gourdin,%20William%20H.&rft.date=1982-01-01&rft.volume=53&rft.issue=8&rft.spage=5920&rft.epage=5925&rft.pages=5920-5925&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.331434&rft_dat=%3Ccrossref%3E10_1063_1_331434%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true