Threshold switching in chalcogenide-glass thin films

We discuss bias-induced threshold switching in chalcogenide-glass thin films, with an emphasis on the unique aspects of this phenomenon. The electronic nature of both the ON state and the recovery process is now clear. In this paper, we also establish the fundamentally electronic origin of the initi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1980-06, Vol.51 (6), p.3289-3309
Hauptverfasser: Adler, D., Shur, M. S., Silver, M., Ovshinsky, S. R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3309
container_issue 6
container_start_page 3289
container_title Journal of applied physics
container_volume 51
creator Adler, D.
Shur, M. S.
Silver, M.
Ovshinsky, S. R.
description We discuss bias-induced threshold switching in chalcogenide-glass thin films, with an emphasis on the unique aspects of this phenomenon. The electronic nature of both the ON state and the recovery process is now clear. In this paper, we also establish the fundamentally electronic origin of the initiation process. An isothermal model is presented and analyzed for filamentary ON-state solutions via a set of phenomenological kinetic equations consistent with recent advances in our understanding of the electronic structure of chalcogenide glasses. The predictions of this model compare favorably with a variety of experimental results. The model is basically that the switching transition develops when a critical electric field is reached somewhere in the sample, usually near an electrode. Field-induced carrier generation then causes the charged traps in the bulk to fill (neutralize). When all the traps are filled, carriers can transit the sample with an enhanced mobility and the generation rate required to keep the traps filled is reduced from its threshold value.
doi_str_mv 10.1063/1.328036
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_328036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_328036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-109d741fbbd37fa4838a586ba38e70bd9710133b0206d24a5cf522de201246eb3</originalsourceid><addsrcrecordid>eNotj8tKxDAUQIMoWEfBT-jSTcZ7c9smWcrgCwbcjOuSZxvptJIUxL9XGVdnceDAYewWYYvQ0T1uSSig7oxVCEpz2bZwzioAgVxpqS_ZVSkfAIiKdMWaw5hDGZfJ1-UrrW5M81CnuXajmdwyhDn5wIfJlFKvv66OaTqWa3YRzVTCzT837P3p8bB74fu359fdw547oXHlCNrLBqO1nmQ0jSJlWtVZQypIsF5LBCSyIKDzojGti60QPghA0XTB0obdnbouL6XkEPvPnI4mf_cI_d9tj_3pln4Ah5RF0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Threshold switching in chalcogenide-glass thin films</title><source>AIP Digital Archive</source><creator>Adler, D. ; Shur, M. S. ; Silver, M. ; Ovshinsky, S. R.</creator><creatorcontrib>Adler, D. ; Shur, M. S. ; Silver, M. ; Ovshinsky, S. R.</creatorcontrib><description>We discuss bias-induced threshold switching in chalcogenide-glass thin films, with an emphasis on the unique aspects of this phenomenon. The electronic nature of both the ON state and the recovery process is now clear. In this paper, we also establish the fundamentally electronic origin of the initiation process. An isothermal model is presented and analyzed for filamentary ON-state solutions via a set of phenomenological kinetic equations consistent with recent advances in our understanding of the electronic structure of chalcogenide glasses. The predictions of this model compare favorably with a variety of experimental results. The model is basically that the switching transition develops when a critical electric field is reached somewhere in the sample, usually near an electrode. Field-induced carrier generation then causes the charged traps in the bulk to fill (neutralize). When all the traps are filled, carriers can transit the sample with an enhanced mobility and the generation rate required to keep the traps filled is reduced from its threshold value.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.328036</identifier><language>eng</language><ispartof>Journal of applied physics, 1980-06, Vol.51 (6), p.3289-3309</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-109d741fbbd37fa4838a586ba38e70bd9710133b0206d24a5cf522de201246eb3</citedby><cites>FETCH-LOGICAL-c291t-109d741fbbd37fa4838a586ba38e70bd9710133b0206d24a5cf522de201246eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Adler, D.</creatorcontrib><creatorcontrib>Shur, M. S.</creatorcontrib><creatorcontrib>Silver, M.</creatorcontrib><creatorcontrib>Ovshinsky, S. R.</creatorcontrib><title>Threshold switching in chalcogenide-glass thin films</title><title>Journal of applied physics</title><description>We discuss bias-induced threshold switching in chalcogenide-glass thin films, with an emphasis on the unique aspects of this phenomenon. The electronic nature of both the ON state and the recovery process is now clear. In this paper, we also establish the fundamentally electronic origin of the initiation process. An isothermal model is presented and analyzed for filamentary ON-state solutions via a set of phenomenological kinetic equations consistent with recent advances in our understanding of the electronic structure of chalcogenide glasses. The predictions of this model compare favorably with a variety of experimental results. The model is basically that the switching transition develops when a critical electric field is reached somewhere in the sample, usually near an electrode. Field-induced carrier generation then causes the charged traps in the bulk to fill (neutralize). When all the traps are filled, carriers can transit the sample with an enhanced mobility and the generation rate required to keep the traps filled is reduced from its threshold value.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNotj8tKxDAUQIMoWEfBT-jSTcZ7c9smWcrgCwbcjOuSZxvptJIUxL9XGVdnceDAYewWYYvQ0T1uSSig7oxVCEpz2bZwzioAgVxpqS_ZVSkfAIiKdMWaw5hDGZfJ1-UrrW5M81CnuXajmdwyhDn5wIfJlFKvv66OaTqWa3YRzVTCzT837P3p8bB74fu359fdw547oXHlCNrLBqO1nmQ0jSJlWtVZQypIsF5LBCSyIKDzojGti60QPghA0XTB0obdnbouL6XkEPvPnI4mf_cI_d9tj_3pln4Ah5RF0g</recordid><startdate>19800601</startdate><enddate>19800601</enddate><creator>Adler, D.</creator><creator>Shur, M. S.</creator><creator>Silver, M.</creator><creator>Ovshinsky, S. R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19800601</creationdate><title>Threshold switching in chalcogenide-glass thin films</title><author>Adler, D. ; Shur, M. S. ; Silver, M. ; Ovshinsky, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-109d741fbbd37fa4838a586ba38e70bd9710133b0206d24a5cf522de201246eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adler, D.</creatorcontrib><creatorcontrib>Shur, M. S.</creatorcontrib><creatorcontrib>Silver, M.</creatorcontrib><creatorcontrib>Ovshinsky, S. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adler, D.</au><au>Shur, M. S.</au><au>Silver, M.</au><au>Ovshinsky, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Threshold switching in chalcogenide-glass thin films</atitle><jtitle>Journal of applied physics</jtitle><date>1980-06-01</date><risdate>1980</risdate><volume>51</volume><issue>6</issue><spage>3289</spage><epage>3309</epage><pages>3289-3309</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We discuss bias-induced threshold switching in chalcogenide-glass thin films, with an emphasis on the unique aspects of this phenomenon. The electronic nature of both the ON state and the recovery process is now clear. In this paper, we also establish the fundamentally electronic origin of the initiation process. An isothermal model is presented and analyzed for filamentary ON-state solutions via a set of phenomenological kinetic equations consistent with recent advances in our understanding of the electronic structure of chalcogenide glasses. The predictions of this model compare favorably with a variety of experimental results. The model is basically that the switching transition develops when a critical electric field is reached somewhere in the sample, usually near an electrode. Field-induced carrier generation then causes the charged traps in the bulk to fill (neutralize). When all the traps are filled, carriers can transit the sample with an enhanced mobility and the generation rate required to keep the traps filled is reduced from its threshold value.</abstract><doi>10.1063/1.328036</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1980-06, Vol.51 (6), p.3289-3309
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_328036
source AIP Digital Archive
title Threshold switching in chalcogenide-glass thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Threshold%20switching%20in%20chalcogenide-glass%20thin%20films&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Adler,%20D.&rft.date=1980-06-01&rft.volume=51&rft.issue=6&rft.spage=3289&rft.epage=3309&rft.pages=3289-3309&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.328036&rft_dat=%3Ccrossref%3E10_1063_1_328036%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true