An investigation of the effects of system parameters on the production of hollow hydrogen droplets
Many inertial confinement target designs have the fuel as a frozen spherical shell of hydrogen isotopes. One method of manufacturing these targets would be to produce the spherical shell first. In this paper we report on an experimental study on the production of spherical shells of liquid and solid...
Gespeichert in:
Veröffentlicht in: | J. Appl. Phys.; (United States) 1979-06, Vol.50 (6), p.4139-4142 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4142 |
---|---|
container_issue | 6 |
container_start_page | 4139 |
container_title | J. Appl. Phys.; (United States) |
container_volume | 50 |
creator | Guttman, J. L. Hendricks, C. D. Kim, K. Turnbull, R. J. |
description | Many inertial confinement target designs have the fuel as a frozen spherical shell of hydrogen isotopes. One method of manufacturing these targets would be to produce the spherical shell first. In this paper we report on an experimental study on the production of spherical shells of liquid and solid hydrogen. These shells are made by acoustically breaking up a jet of superheated liquid hydrogen into drops and at the same time cavitating a bubble in the center of each drop. The resulting growth of the bubbles by evaporation produces the spherical shells. The size and the aspect ratio of the spherical shells are found to be affected by several parameters. The mass of the drop depends on the diameter of the nozzle from which the jet emerges. Also, varying the frequency of the acoustic excitation gives some control of the droplet size. The aspect ratio depends most strongly on the liquid temperature and the droplet-chamber pressure. Increasing the temperature or lowering the pressure increases the aspect ratio of the shell. If the pressure is lowered below the triplet-point pressure of hydrogen, the shells freeze forming a spherical shell of solid hydrogen. |
doi_str_mv | 10.1063/1.326494 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_326494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_326494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-e6fac1dad8c7e8c8440e7ef9608480dae8aa6d0e71cc1e17642efc74ab95897a3</originalsourceid><addsrcrecordid>eNo1kEFLAzEUhIMoWKvgTwievGxNstlscixFq1DwoueQZl-6K9tkSaLSf29q9TS84ZsHMwjdUrKgRNQPdFEzwRU_QzNKpKrapiHnaEYIo5VUrbpEVyl9EEKprNUMbZceD_4LUh52Jg_B4-Bw7gGDc2BzOp7pkDLs8WSi2UOGWEz_y0wxdJ_2P9WHcQzfuD90MezA4yLTCDldowtnxgQ3fzpH70-Pb6vnavO6flktN5VlDcsVCGcs7UwnbQvSSs4JtOCUIJJL0hmQxoiueNRaCrQVnIGzLTdb1ZRipp6ju9PfUMroZIcMtrfB-9JDC8ZZLUSB7k-QjSGlCE5PcdibeNCU6OOAmurTgPUPy0tkjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An investigation of the effects of system parameters on the production of hollow hydrogen droplets</title><source>AIP Digital Archive</source><creator>Guttman, J. L. ; Hendricks, C. D. ; Kim, K. ; Turnbull, R. J.</creator><creatorcontrib>Guttman, J. L. ; Hendricks, C. D. ; Kim, K. ; Turnbull, R. J. ; Department of Electrical Engineering, University of Illinois, Urbana, Illinois 61801</creatorcontrib><description>Many inertial confinement target designs have the fuel as a frozen spherical shell of hydrogen isotopes. One method of manufacturing these targets would be to produce the spherical shell first. In this paper we report on an experimental study on the production of spherical shells of liquid and solid hydrogen. These shells are made by acoustically breaking up a jet of superheated liquid hydrogen into drops and at the same time cavitating a bubble in the center of each drop. The resulting growth of the bubbles by evaporation produces the spherical shells. The size and the aspect ratio of the spherical shells are found to be affected by several parameters. The mass of the drop depends on the diameter of the nozzle from which the jet emerges. Also, varying the frequency of the acoustic excitation gives some control of the droplet size. The aspect ratio depends most strongly on the liquid temperature and the droplet-chamber pressure. Increasing the temperature or lowering the pressure increases the aspect ratio of the shell. If the pressure is lowered below the triplet-point pressure of hydrogen, the shells freeze forming a spherical shell of solid hydrogen.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.326494</identifier><language>eng</language><publisher>United States</publisher><subject>060201 - Fusion Fuels- Fabrication & Testing- (1980-1987) ; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ACOUSTICS ; BUBBLES ; CAVITATION ; CONFIGURATION ; CONFINEMENT ; CRYOGENIC FLUIDS ; DROPLETS ; ELEMENTS ; ENERGY-LEVEL TRANSITIONS ; EVAPORATION ; EXCITATION ; FABRICATION ; FLUIDS ; FREQUENCY DEPENDENCE ; FUELS ; HEATING ; HYDROGEN ; INERTIAL CONFINEMENT ; ISOTOPES ; JETS ; LASER TARGETS ; LIQUIDS ; NONMETALS ; NOZZLES ; PARTICLES ; PHASE TRANSFORMATIONS ; PLASMA CONFINEMENT ; PRODUCTION ; SHELLS ; SOLIDS ; SPHERICAL CONFIGURATION ; SUPERHEATING ; TARGETS ; THERMONUCLEAR FUELS ; THERMONUCLEAR REACTORS</subject><ispartof>J. Appl. Phys.; (United States), 1979-06, Vol.50 (6), p.4139-4142</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-e6fac1dad8c7e8c8440e7ef9608480dae8aa6d0e71cc1e17642efc74ab95897a3</citedby><cites>FETCH-LOGICAL-c252t-e6fac1dad8c7e8c8440e7ef9608480dae8aa6d0e71cc1e17642efc74ab95897a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6242366$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guttman, J. L.</creatorcontrib><creatorcontrib>Hendricks, C. D.</creatorcontrib><creatorcontrib>Kim, K.</creatorcontrib><creatorcontrib>Turnbull, R. J.</creatorcontrib><creatorcontrib>Department of Electrical Engineering, University of Illinois, Urbana, Illinois 61801</creatorcontrib><title>An investigation of the effects of system parameters on the production of hollow hydrogen droplets</title><title>J. Appl. Phys.; (United States)</title><description>Many inertial confinement target designs have the fuel as a frozen spherical shell of hydrogen isotopes. One method of manufacturing these targets would be to produce the spherical shell first. In this paper we report on an experimental study on the production of spherical shells of liquid and solid hydrogen. These shells are made by acoustically breaking up a jet of superheated liquid hydrogen into drops and at the same time cavitating a bubble in the center of each drop. The resulting growth of the bubbles by evaporation produces the spherical shells. The size and the aspect ratio of the spherical shells are found to be affected by several parameters. The mass of the drop depends on the diameter of the nozzle from which the jet emerges. Also, varying the frequency of the acoustic excitation gives some control of the droplet size. The aspect ratio depends most strongly on the liquid temperature and the droplet-chamber pressure. Increasing the temperature or lowering the pressure increases the aspect ratio of the shell. If the pressure is lowered below the triplet-point pressure of hydrogen, the shells freeze forming a spherical shell of solid hydrogen.</description><subject>060201 - Fusion Fuels- Fabrication & Testing- (1980-1987)</subject><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ACOUSTICS</subject><subject>BUBBLES</subject><subject>CAVITATION</subject><subject>CONFIGURATION</subject><subject>CONFINEMENT</subject><subject>CRYOGENIC FLUIDS</subject><subject>DROPLETS</subject><subject>ELEMENTS</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>EVAPORATION</subject><subject>EXCITATION</subject><subject>FABRICATION</subject><subject>FLUIDS</subject><subject>FREQUENCY DEPENDENCE</subject><subject>FUELS</subject><subject>HEATING</subject><subject>HYDROGEN</subject><subject>INERTIAL CONFINEMENT</subject><subject>ISOTOPES</subject><subject>JETS</subject><subject>LASER TARGETS</subject><subject>LIQUIDS</subject><subject>NONMETALS</subject><subject>NOZZLES</subject><subject>PARTICLES</subject><subject>PHASE TRANSFORMATIONS</subject><subject>PLASMA CONFINEMENT</subject><subject>PRODUCTION</subject><subject>SHELLS</subject><subject>SOLIDS</subject><subject>SPHERICAL CONFIGURATION</subject><subject>SUPERHEATING</subject><subject>TARGETS</subject><subject>THERMONUCLEAR FUELS</subject><subject>THERMONUCLEAR REACTORS</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><recordid>eNo1kEFLAzEUhIMoWKvgTwievGxNstlscixFq1DwoueQZl-6K9tkSaLSf29q9TS84ZsHMwjdUrKgRNQPdFEzwRU_QzNKpKrapiHnaEYIo5VUrbpEVyl9EEKprNUMbZceD_4LUh52Jg_B4-Bw7gGDc2BzOp7pkDLs8WSi2UOGWEz_y0wxdJ_2P9WHcQzfuD90MezA4yLTCDldowtnxgQ3fzpH70-Pb6vnavO6flktN5VlDcsVCGcs7UwnbQvSSs4JtOCUIJJL0hmQxoiueNRaCrQVnIGzLTdb1ZRipp6ju9PfUMroZIcMtrfB-9JDC8ZZLUSB7k-QjSGlCE5PcdibeNCU6OOAmurTgPUPy0tkjQ</recordid><startdate>19790601</startdate><enddate>19790601</enddate><creator>Guttman, J. L.</creator><creator>Hendricks, C. D.</creator><creator>Kim, K.</creator><creator>Turnbull, R. J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19790601</creationdate><title>An investigation of the effects of system parameters on the production of hollow hydrogen droplets</title><author>Guttman, J. L. ; Hendricks, C. D. ; Kim, K. ; Turnbull, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-e6fac1dad8c7e8c8440e7ef9608480dae8aa6d0e71cc1e17642efc74ab95897a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><topic>060201 - Fusion Fuels- Fabrication & Testing- (1980-1987)</topic><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ACOUSTICS</topic><topic>BUBBLES</topic><topic>CAVITATION</topic><topic>CONFIGURATION</topic><topic>CONFINEMENT</topic><topic>CRYOGENIC FLUIDS</topic><topic>DROPLETS</topic><topic>ELEMENTS</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>EVAPORATION</topic><topic>EXCITATION</topic><topic>FABRICATION</topic><topic>FLUIDS</topic><topic>FREQUENCY DEPENDENCE</topic><topic>FUELS</topic><topic>HEATING</topic><topic>HYDROGEN</topic><topic>INERTIAL CONFINEMENT</topic><topic>ISOTOPES</topic><topic>JETS</topic><topic>LASER TARGETS</topic><topic>LIQUIDS</topic><topic>NONMETALS</topic><topic>NOZZLES</topic><topic>PARTICLES</topic><topic>PHASE TRANSFORMATIONS</topic><topic>PLASMA CONFINEMENT</topic><topic>PRODUCTION</topic><topic>SHELLS</topic><topic>SOLIDS</topic><topic>SPHERICAL CONFIGURATION</topic><topic>SUPERHEATING</topic><topic>TARGETS</topic><topic>THERMONUCLEAR FUELS</topic><topic>THERMONUCLEAR REACTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guttman, J. L.</creatorcontrib><creatorcontrib>Hendricks, C. D.</creatorcontrib><creatorcontrib>Kim, K.</creatorcontrib><creatorcontrib>Turnbull, R. J.</creatorcontrib><creatorcontrib>Department of Electrical Engineering, University of Illinois, Urbana, Illinois 61801</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Appl. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guttman, J. L.</au><au>Hendricks, C. D.</au><au>Kim, K.</au><au>Turnbull, R. J.</au><aucorp>Department of Electrical Engineering, University of Illinois, Urbana, Illinois 61801</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation of the effects of system parameters on the production of hollow hydrogen droplets</atitle><jtitle>J. Appl. Phys.; (United States)</jtitle><date>1979-06-01</date><risdate>1979</risdate><volume>50</volume><issue>6</issue><spage>4139</spage><epage>4142</epage><pages>4139-4142</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Many inertial confinement target designs have the fuel as a frozen spherical shell of hydrogen isotopes. One method of manufacturing these targets would be to produce the spherical shell first. In this paper we report on an experimental study on the production of spherical shells of liquid and solid hydrogen. These shells are made by acoustically breaking up a jet of superheated liquid hydrogen into drops and at the same time cavitating a bubble in the center of each drop. The resulting growth of the bubbles by evaporation produces the spherical shells. The size and the aspect ratio of the spherical shells are found to be affected by several parameters. The mass of the drop depends on the diameter of the nozzle from which the jet emerges. Also, varying the frequency of the acoustic excitation gives some control of the droplet size. The aspect ratio depends most strongly on the liquid temperature and the droplet-chamber pressure. Increasing the temperature or lowering the pressure increases the aspect ratio of the shell. If the pressure is lowered below the triplet-point pressure of hydrogen, the shells freeze forming a spherical shell of solid hydrogen.</abstract><cop>United States</cop><doi>10.1063/1.326494</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | J. Appl. Phys.; (United States), 1979-06, Vol.50 (6), p.4139-4142 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_326494 |
source | AIP Digital Archive |
subjects | 060201 - Fusion Fuels- Fabrication & Testing- (1980-1987) 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ACOUSTICS BUBBLES CAVITATION CONFIGURATION CONFINEMENT CRYOGENIC FLUIDS DROPLETS ELEMENTS ENERGY-LEVEL TRANSITIONS EVAPORATION EXCITATION FABRICATION FLUIDS FREQUENCY DEPENDENCE FUELS HEATING HYDROGEN INERTIAL CONFINEMENT ISOTOPES JETS LASER TARGETS LIQUIDS NONMETALS NOZZLES PARTICLES PHASE TRANSFORMATIONS PLASMA CONFINEMENT PRODUCTION SHELLS SOLIDS SPHERICAL CONFIGURATION SUPERHEATING TARGETS THERMONUCLEAR FUELS THERMONUCLEAR REACTORS |
title | An investigation of the effects of system parameters on the production of hollow hydrogen droplets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20of%20the%20effects%20of%20system%20parameters%20on%20the%20production%20of%20hollow%20hydrogen%20droplets&rft.jtitle=J.%20Appl.%20Phys.;%20(United%20States)&rft.au=Guttman,%20J.%20L.&rft.aucorp=Department%20of%20Electrical%20Engineering,%20University%20of%20Illinois,%20Urbana,%20Illinois%2061801&rft.date=1979-06-01&rft.volume=50&rft.issue=6&rft.spage=4139&rft.epage=4142&rft.pages=4139-4142&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.326494&rft_dat=%3Ccrossref_osti_%3E10_1063_1_326494%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |