An investigation of the effects of system parameters on the production of hollow hydrogen droplets

Many inertial confinement target designs have the fuel as a frozen spherical shell of hydrogen isotopes. One method of manufacturing these targets would be to produce the spherical shell first. In this paper we report on an experimental study on the production of spherical shells of liquid and solid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Appl. Phys.; (United States) 1979-06, Vol.50 (6), p.4139-4142
Hauptverfasser: Guttman, J. L., Hendricks, C. D., Kim, K., Turnbull, R. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4142
container_issue 6
container_start_page 4139
container_title J. Appl. Phys.; (United States)
container_volume 50
creator Guttman, J. L.
Hendricks, C. D.
Kim, K.
Turnbull, R. J.
description Many inertial confinement target designs have the fuel as a frozen spherical shell of hydrogen isotopes. One method of manufacturing these targets would be to produce the spherical shell first. In this paper we report on an experimental study on the production of spherical shells of liquid and solid hydrogen. These shells are made by acoustically breaking up a jet of superheated liquid hydrogen into drops and at the same time cavitating a bubble in the center of each drop. The resulting growth of the bubbles by evaporation produces the spherical shells. The size and the aspect ratio of the spherical shells are found to be affected by several parameters. The mass of the drop depends on the diameter of the nozzle from which the jet emerges. Also, varying the frequency of the acoustic excitation gives some control of the droplet size. The aspect ratio depends most strongly on the liquid temperature and the droplet-chamber pressure. Increasing the temperature or lowering the pressure increases the aspect ratio of the shell. If the pressure is lowered below the triplet-point pressure of hydrogen, the shells freeze forming a spherical shell of solid hydrogen.
doi_str_mv 10.1063/1.326494
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_326494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_326494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-e6fac1dad8c7e8c8440e7ef9608480dae8aa6d0e71cc1e17642efc74ab95897a3</originalsourceid><addsrcrecordid>eNo1kEFLAzEUhIMoWKvgTwievGxNstlscixFq1DwoueQZl-6K9tkSaLSf29q9TS84ZsHMwjdUrKgRNQPdFEzwRU_QzNKpKrapiHnaEYIo5VUrbpEVyl9EEKprNUMbZceD_4LUh52Jg_B4-Bw7gGDc2BzOp7pkDLs8WSi2UOGWEz_y0wxdJ_2P9WHcQzfuD90MezA4yLTCDldowtnxgQ3fzpH70-Pb6vnavO6flktN5VlDcsVCGcs7UwnbQvSSs4JtOCUIJJL0hmQxoiueNRaCrQVnIGzLTdb1ZRipp6ju9PfUMroZIcMtrfB-9JDC8ZZLUSB7k-QjSGlCE5PcdibeNCU6OOAmurTgPUPy0tkjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An investigation of the effects of system parameters on the production of hollow hydrogen droplets</title><source>AIP Digital Archive</source><creator>Guttman, J. L. ; Hendricks, C. D. ; Kim, K. ; Turnbull, R. J.</creator><creatorcontrib>Guttman, J. L. ; Hendricks, C. D. ; Kim, K. ; Turnbull, R. J. ; Department of Electrical Engineering, University of Illinois, Urbana, Illinois 61801</creatorcontrib><description>Many inertial confinement target designs have the fuel as a frozen spherical shell of hydrogen isotopes. One method of manufacturing these targets would be to produce the spherical shell first. In this paper we report on an experimental study on the production of spherical shells of liquid and solid hydrogen. These shells are made by acoustically breaking up a jet of superheated liquid hydrogen into drops and at the same time cavitating a bubble in the center of each drop. The resulting growth of the bubbles by evaporation produces the spherical shells. The size and the aspect ratio of the spherical shells are found to be affected by several parameters. The mass of the drop depends on the diameter of the nozzle from which the jet emerges. Also, varying the frequency of the acoustic excitation gives some control of the droplet size. The aspect ratio depends most strongly on the liquid temperature and the droplet-chamber pressure. Increasing the temperature or lowering the pressure increases the aspect ratio of the shell. If the pressure is lowered below the triplet-point pressure of hydrogen, the shells freeze forming a spherical shell of solid hydrogen.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.326494</identifier><language>eng</language><publisher>United States</publisher><subject>060201 - Fusion Fuels- Fabrication &amp; Testing- (1980-1987) ; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ACOUSTICS ; BUBBLES ; CAVITATION ; CONFIGURATION ; CONFINEMENT ; CRYOGENIC FLUIDS ; DROPLETS ; ELEMENTS ; ENERGY-LEVEL TRANSITIONS ; EVAPORATION ; EXCITATION ; FABRICATION ; FLUIDS ; FREQUENCY DEPENDENCE ; FUELS ; HEATING ; HYDROGEN ; INERTIAL CONFINEMENT ; ISOTOPES ; JETS ; LASER TARGETS ; LIQUIDS ; NONMETALS ; NOZZLES ; PARTICLES ; PHASE TRANSFORMATIONS ; PLASMA CONFINEMENT ; PRODUCTION ; SHELLS ; SOLIDS ; SPHERICAL CONFIGURATION ; SUPERHEATING ; TARGETS ; THERMONUCLEAR FUELS ; THERMONUCLEAR REACTORS</subject><ispartof>J. Appl. Phys.; (United States), 1979-06, Vol.50 (6), p.4139-4142</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-e6fac1dad8c7e8c8440e7ef9608480dae8aa6d0e71cc1e17642efc74ab95897a3</citedby><cites>FETCH-LOGICAL-c252t-e6fac1dad8c7e8c8440e7ef9608480dae8aa6d0e71cc1e17642efc74ab95897a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/6242366$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guttman, J. L.</creatorcontrib><creatorcontrib>Hendricks, C. D.</creatorcontrib><creatorcontrib>Kim, K.</creatorcontrib><creatorcontrib>Turnbull, R. J.</creatorcontrib><creatorcontrib>Department of Electrical Engineering, University of Illinois, Urbana, Illinois 61801</creatorcontrib><title>An investigation of the effects of system parameters on the production of hollow hydrogen droplets</title><title>J. Appl. Phys.; (United States)</title><description>Many inertial confinement target designs have the fuel as a frozen spherical shell of hydrogen isotopes. One method of manufacturing these targets would be to produce the spherical shell first. In this paper we report on an experimental study on the production of spherical shells of liquid and solid hydrogen. These shells are made by acoustically breaking up a jet of superheated liquid hydrogen into drops and at the same time cavitating a bubble in the center of each drop. The resulting growth of the bubbles by evaporation produces the spherical shells. The size and the aspect ratio of the spherical shells are found to be affected by several parameters. The mass of the drop depends on the diameter of the nozzle from which the jet emerges. Also, varying the frequency of the acoustic excitation gives some control of the droplet size. The aspect ratio depends most strongly on the liquid temperature and the droplet-chamber pressure. Increasing the temperature or lowering the pressure increases the aspect ratio of the shell. If the pressure is lowered below the triplet-point pressure of hydrogen, the shells freeze forming a spherical shell of solid hydrogen.</description><subject>060201 - Fusion Fuels- Fabrication &amp; Testing- (1980-1987)</subject><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ACOUSTICS</subject><subject>BUBBLES</subject><subject>CAVITATION</subject><subject>CONFIGURATION</subject><subject>CONFINEMENT</subject><subject>CRYOGENIC FLUIDS</subject><subject>DROPLETS</subject><subject>ELEMENTS</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>EVAPORATION</subject><subject>EXCITATION</subject><subject>FABRICATION</subject><subject>FLUIDS</subject><subject>FREQUENCY DEPENDENCE</subject><subject>FUELS</subject><subject>HEATING</subject><subject>HYDROGEN</subject><subject>INERTIAL CONFINEMENT</subject><subject>ISOTOPES</subject><subject>JETS</subject><subject>LASER TARGETS</subject><subject>LIQUIDS</subject><subject>NONMETALS</subject><subject>NOZZLES</subject><subject>PARTICLES</subject><subject>PHASE TRANSFORMATIONS</subject><subject>PLASMA CONFINEMENT</subject><subject>PRODUCTION</subject><subject>SHELLS</subject><subject>SOLIDS</subject><subject>SPHERICAL CONFIGURATION</subject><subject>SUPERHEATING</subject><subject>TARGETS</subject><subject>THERMONUCLEAR FUELS</subject><subject>THERMONUCLEAR REACTORS</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><recordid>eNo1kEFLAzEUhIMoWKvgTwievGxNstlscixFq1DwoueQZl-6K9tkSaLSf29q9TS84ZsHMwjdUrKgRNQPdFEzwRU_QzNKpKrapiHnaEYIo5VUrbpEVyl9EEKprNUMbZceD_4LUh52Jg_B4-Bw7gGDc2BzOp7pkDLs8WSi2UOGWEz_y0wxdJ_2P9WHcQzfuD90MezA4yLTCDldowtnxgQ3fzpH70-Pb6vnavO6flktN5VlDcsVCGcs7UwnbQvSSs4JtOCUIJJL0hmQxoiueNRaCrQVnIGzLTdb1ZRipp6ju9PfUMroZIcMtrfB-9JDC8ZZLUSB7k-QjSGlCE5PcdibeNCU6OOAmurTgPUPy0tkjQ</recordid><startdate>19790601</startdate><enddate>19790601</enddate><creator>Guttman, J. L.</creator><creator>Hendricks, C. D.</creator><creator>Kim, K.</creator><creator>Turnbull, R. J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19790601</creationdate><title>An investigation of the effects of system parameters on the production of hollow hydrogen droplets</title><author>Guttman, J. L. ; Hendricks, C. D. ; Kim, K. ; Turnbull, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-e6fac1dad8c7e8c8440e7ef9608480dae8aa6d0e71cc1e17642efc74ab95897a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><topic>060201 - Fusion Fuels- Fabrication &amp; Testing- (1980-1987)</topic><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ACOUSTICS</topic><topic>BUBBLES</topic><topic>CAVITATION</topic><topic>CONFIGURATION</topic><topic>CONFINEMENT</topic><topic>CRYOGENIC FLUIDS</topic><topic>DROPLETS</topic><topic>ELEMENTS</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>EVAPORATION</topic><topic>EXCITATION</topic><topic>FABRICATION</topic><topic>FLUIDS</topic><topic>FREQUENCY DEPENDENCE</topic><topic>FUELS</topic><topic>HEATING</topic><topic>HYDROGEN</topic><topic>INERTIAL CONFINEMENT</topic><topic>ISOTOPES</topic><topic>JETS</topic><topic>LASER TARGETS</topic><topic>LIQUIDS</topic><topic>NONMETALS</topic><topic>NOZZLES</topic><topic>PARTICLES</topic><topic>PHASE TRANSFORMATIONS</topic><topic>PLASMA CONFINEMENT</topic><topic>PRODUCTION</topic><topic>SHELLS</topic><topic>SOLIDS</topic><topic>SPHERICAL CONFIGURATION</topic><topic>SUPERHEATING</topic><topic>TARGETS</topic><topic>THERMONUCLEAR FUELS</topic><topic>THERMONUCLEAR REACTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guttman, J. L.</creatorcontrib><creatorcontrib>Hendricks, C. D.</creatorcontrib><creatorcontrib>Kim, K.</creatorcontrib><creatorcontrib>Turnbull, R. J.</creatorcontrib><creatorcontrib>Department of Electrical Engineering, University of Illinois, Urbana, Illinois 61801</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Appl. Phys.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guttman, J. L.</au><au>Hendricks, C. D.</au><au>Kim, K.</au><au>Turnbull, R. J.</au><aucorp>Department of Electrical Engineering, University of Illinois, Urbana, Illinois 61801</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation of the effects of system parameters on the production of hollow hydrogen droplets</atitle><jtitle>J. Appl. Phys.; (United States)</jtitle><date>1979-06-01</date><risdate>1979</risdate><volume>50</volume><issue>6</issue><spage>4139</spage><epage>4142</epage><pages>4139-4142</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Many inertial confinement target designs have the fuel as a frozen spherical shell of hydrogen isotopes. One method of manufacturing these targets would be to produce the spherical shell first. In this paper we report on an experimental study on the production of spherical shells of liquid and solid hydrogen. These shells are made by acoustically breaking up a jet of superheated liquid hydrogen into drops and at the same time cavitating a bubble in the center of each drop. The resulting growth of the bubbles by evaporation produces the spherical shells. The size and the aspect ratio of the spherical shells are found to be affected by several parameters. The mass of the drop depends on the diameter of the nozzle from which the jet emerges. Also, varying the frequency of the acoustic excitation gives some control of the droplet size. The aspect ratio depends most strongly on the liquid temperature and the droplet-chamber pressure. Increasing the temperature or lowering the pressure increases the aspect ratio of the shell. If the pressure is lowered below the triplet-point pressure of hydrogen, the shells freeze forming a spherical shell of solid hydrogen.</abstract><cop>United States</cop><doi>10.1063/1.326494</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof J. Appl. Phys.; (United States), 1979-06, Vol.50 (6), p.4139-4142
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_326494
source AIP Digital Archive
subjects 060201 - Fusion Fuels- Fabrication & Testing- (1980-1987)
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ACOUSTICS
BUBBLES
CAVITATION
CONFIGURATION
CONFINEMENT
CRYOGENIC FLUIDS
DROPLETS
ELEMENTS
ENERGY-LEVEL TRANSITIONS
EVAPORATION
EXCITATION
FABRICATION
FLUIDS
FREQUENCY DEPENDENCE
FUELS
HEATING
HYDROGEN
INERTIAL CONFINEMENT
ISOTOPES
JETS
LASER TARGETS
LIQUIDS
NONMETALS
NOZZLES
PARTICLES
PHASE TRANSFORMATIONS
PLASMA CONFINEMENT
PRODUCTION
SHELLS
SOLIDS
SPHERICAL CONFIGURATION
SUPERHEATING
TARGETS
THERMONUCLEAR FUELS
THERMONUCLEAR REACTORS
title An investigation of the effects of system parameters on the production of hollow hydrogen droplets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20of%20the%20effects%20of%20system%20parameters%20on%20the%20production%20of%20hollow%20hydrogen%20droplets&rft.jtitle=J.%20Appl.%20Phys.;%20(United%20States)&rft.au=Guttman,%20J.%20L.&rft.aucorp=Department%20of%20Electrical%20Engineering,%20University%20of%20Illinois,%20Urbana,%20Illinois%2061801&rft.date=1979-06-01&rft.volume=50&rft.issue=6&rft.spage=4139&rft.epage=4142&rft.pages=4139-4142&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.326494&rft_dat=%3Ccrossref_osti_%3E10_1063_1_326494%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true