A benchmark study on the thermal conductivity of nanofluids

This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids," was measured by over 30 organizations worldwide, using a variety of experime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2009-11, Vol.106 (9), p.094312-094312-14
Hauptverfasser: Buongiorno, Jacopo, Venerus, David C., Prabhat, Naveen, McKrell, Thomas, Townsend, Jessica, Christianson, Rebecca, Tolmachev, Yuriy V., Keblinski, Pawel, Hu, Lin-wen, Alvarado, Jorge L., Bang, In Cheol, Bishnoi, Sandra W., Bonetti, Marco, Botz, Frank, Cecere, Anselmo, Chang, Yun, Chen, Gang, Chen, Haisheng, Chung, Sung Jae, Chyu, Minking K., Das, Sarit K., Di Paola, Roberto, Ding, Yulong, Dubois, Frank, Dzido, Grzegorz, Eapen, Jacob, Escher, Werner, Funfschilling, Denis, Galand, Quentin, Gao, Jinwei, Gharagozloo, Patricia E., Goodson, Kenneth E., Gutierrez, Jorge Gustavo, Hong, Haiping, Horton, Mark, Hwang, Kyo Sik, Iorio, Carlo S., Jang, Seok Pil, Jarzebski, Andrzej B., Jiang, Yiran, Jin, Liwen, Kabelac, Stephan, Kamath, Aravind, Kedzierski, Mark A., Kieng, Lim Geok, Kim, Chongyoup, Kim, Ji-Hyun, Kim, Seokwon, Lee, Seung Hyun, Leong, Kai Choong, Manna, Indranil, Michel, Bruno, Ni, Rui, Patel, Hrishikesh E., Philip, John, Poulikakos, Dimos, Reynaud, Cecile, Savino, Raffaele, Singh, Pawan K., Song, Pengxiang, Sundararajan, Thirumalachari, Timofeeva, Elena, Tritcak, Todd, Turanov, Aleksandr N., Van Vaerenbergh, Stefan, Wen, Dongsheng, Witharana, Sanjeeva, Yang, Chun, Yeh, Wei-Hsun, Zhao, Xiao-Zheng, Zhou, Sheng-Qi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 094312-14
container_issue 9
container_start_page 094312
container_title Journal of applied physics
container_volume 106
creator Buongiorno, Jacopo
Venerus, David C.
Prabhat, Naveen
McKrell, Thomas
Townsend, Jessica
Christianson, Rebecca
Tolmachev, Yuriy V.
Keblinski, Pawel
Hu, Lin-wen
Alvarado, Jorge L.
Bang, In Cheol
Bishnoi, Sandra W.
Bonetti, Marco
Botz, Frank
Cecere, Anselmo
Chang, Yun
Chen, Gang
Chen, Haisheng
Chung, Sung Jae
Chyu, Minking K.
Das, Sarit K.
Di Paola, Roberto
Ding, Yulong
Dubois, Frank
Dzido, Grzegorz
Eapen, Jacob
Escher, Werner
Funfschilling, Denis
Galand, Quentin
Gao, Jinwei
Gharagozloo, Patricia E.
Goodson, Kenneth E.
Gutierrez, Jorge Gustavo
Hong, Haiping
Horton, Mark
Hwang, Kyo Sik
Iorio, Carlo S.
Jang, Seok Pil
Jarzebski, Andrzej B.
Jiang, Yiran
Jin, Liwen
Kabelac, Stephan
Kamath, Aravind
Kedzierski, Mark A.
Kieng, Lim Geok
Kim, Chongyoup
Kim, Ji-Hyun
Kim, Seokwon
Lee, Seung Hyun
Leong, Kai Choong
Manna, Indranil
Michel, Bruno
Ni, Rui
Patel, Hrishikesh E.
Philip, John
Poulikakos, Dimos
Reynaud, Cecile
Savino, Raffaele
Singh, Pawan K.
Song, Pengxiang
Sundararajan, Thirumalachari
Timofeeva, Elena
Tritcak, Todd
Turanov, Aleksandr N.
Van Vaerenbergh, Stefan
Wen, Dongsheng
Witharana, Sanjeeva
Yang, Chun
Yeh, Wei-Hsun
Zhao, Xiao-Zheng
Zhou, Sheng-Qi
description This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids," was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan [ J. Appl. Phys. 81 , 6692 ( 1997 )] , was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.
doi_str_mv 10.1063/1.3245330
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3245330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-2ba5a36d95a3a554298674bc9c256629af16a96be7b57f6ea44fd4e36827da2f3</originalsourceid><addsrcrecordid>eNp1j8tKxDAUhoMoWEcXvkG2Ljrm3gRBKIM3GHCj65DmwkQ7qTSpMG9vxxncuTjnLM7Hz_8BcI3REiNBb_GSEsYpRSegwkiquuEcnYIKIYJrqRp1Di5y_kAIY0lVBe5a2PlkN1szfsJcJreDQ4Jl4_czbk0P7ZDcZEv8jmX-BZhMGkI_RZcvwVkwffZXx7sA748Pb6vnev369LJq17WlkpeadIYbKpyat-GcESVFwzqrLOFCEGUCFkaJzjcdb4LwhrHgmKdCksYZEugC3Bxy7TjkPPqgv8Y4F95pjPTeWmN9tJ7Z-wObbSymxCH9D7f6T13_qush0R-bDV7r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A benchmark study on the thermal conductivity of nanofluids</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Buongiorno, Jacopo ; Venerus, David C. ; Prabhat, Naveen ; McKrell, Thomas ; Townsend, Jessica ; Christianson, Rebecca ; Tolmachev, Yuriy V. ; Keblinski, Pawel ; Hu, Lin-wen ; Alvarado, Jorge L. ; Bang, In Cheol ; Bishnoi, Sandra W. ; Bonetti, Marco ; Botz, Frank ; Cecere, Anselmo ; Chang, Yun ; Chen, Gang ; Chen, Haisheng ; Chung, Sung Jae ; Chyu, Minking K. ; Das, Sarit K. ; Di Paola, Roberto ; Ding, Yulong ; Dubois, Frank ; Dzido, Grzegorz ; Eapen, Jacob ; Escher, Werner ; Funfschilling, Denis ; Galand, Quentin ; Gao, Jinwei ; Gharagozloo, Patricia E. ; Goodson, Kenneth E. ; Gutierrez, Jorge Gustavo ; Hong, Haiping ; Horton, Mark ; Hwang, Kyo Sik ; Iorio, Carlo S. ; Jang, Seok Pil ; Jarzebski, Andrzej B. ; Jiang, Yiran ; Jin, Liwen ; Kabelac, Stephan ; Kamath, Aravind ; Kedzierski, Mark A. ; Kieng, Lim Geok ; Kim, Chongyoup ; Kim, Ji-Hyun ; Kim, Seokwon ; Lee, Seung Hyun ; Leong, Kai Choong ; Manna, Indranil ; Michel, Bruno ; Ni, Rui ; Patel, Hrishikesh E. ; Philip, John ; Poulikakos, Dimos ; Reynaud, Cecile ; Savino, Raffaele ; Singh, Pawan K. ; Song, Pengxiang ; Sundararajan, Thirumalachari ; Timofeeva, Elena ; Tritcak, Todd ; Turanov, Aleksandr N. ; Van Vaerenbergh, Stefan ; Wen, Dongsheng ; Witharana, Sanjeeva ; Yang, Chun ; Yeh, Wei-Hsun ; Zhao, Xiao-Zheng ; Zhou, Sheng-Qi</creator><creatorcontrib>Buongiorno, Jacopo ; Venerus, David C. ; Prabhat, Naveen ; McKrell, Thomas ; Townsend, Jessica ; Christianson, Rebecca ; Tolmachev, Yuriy V. ; Keblinski, Pawel ; Hu, Lin-wen ; Alvarado, Jorge L. ; Bang, In Cheol ; Bishnoi, Sandra W. ; Bonetti, Marco ; Botz, Frank ; Cecere, Anselmo ; Chang, Yun ; Chen, Gang ; Chen, Haisheng ; Chung, Sung Jae ; Chyu, Minking K. ; Das, Sarit K. ; Di Paola, Roberto ; Ding, Yulong ; Dubois, Frank ; Dzido, Grzegorz ; Eapen, Jacob ; Escher, Werner ; Funfschilling, Denis ; Galand, Quentin ; Gao, Jinwei ; Gharagozloo, Patricia E. ; Goodson, Kenneth E. ; Gutierrez, Jorge Gustavo ; Hong, Haiping ; Horton, Mark ; Hwang, Kyo Sik ; Iorio, Carlo S. ; Jang, Seok Pil ; Jarzebski, Andrzej B. ; Jiang, Yiran ; Jin, Liwen ; Kabelac, Stephan ; Kamath, Aravind ; Kedzierski, Mark A. ; Kieng, Lim Geok ; Kim, Chongyoup ; Kim, Ji-Hyun ; Kim, Seokwon ; Lee, Seung Hyun ; Leong, Kai Choong ; Manna, Indranil ; Michel, Bruno ; Ni, Rui ; Patel, Hrishikesh E. ; Philip, John ; Poulikakos, Dimos ; Reynaud, Cecile ; Savino, Raffaele ; Singh, Pawan K. ; Song, Pengxiang ; Sundararajan, Thirumalachari ; Timofeeva, Elena ; Tritcak, Todd ; Turanov, Aleksandr N. ; Van Vaerenbergh, Stefan ; Wen, Dongsheng ; Witharana, Sanjeeva ; Yang, Chun ; Yeh, Wei-Hsun ; Zhao, Xiao-Zheng ; Zhou, Sheng-Qi</creatorcontrib><description>This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids," was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan [ J. Appl. Phys. 81 , 6692 ( 1997 )] , was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3245330</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2009-11, Vol.106 (9), p.094312-094312-14</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-2ba5a36d95a3a554298674bc9c256629af16a96be7b57f6ea44fd4e36827da2f3</citedby><cites>FETCH-LOGICAL-c385t-2ba5a36d95a3a554298674bc9c256629af16a96be7b57f6ea44fd4e36827da2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3245330$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4497,27903,27904,76131,76137</link.rule.ids></links><search><creatorcontrib>Buongiorno, Jacopo</creatorcontrib><creatorcontrib>Venerus, David C.</creatorcontrib><creatorcontrib>Prabhat, Naveen</creatorcontrib><creatorcontrib>McKrell, Thomas</creatorcontrib><creatorcontrib>Townsend, Jessica</creatorcontrib><creatorcontrib>Christianson, Rebecca</creatorcontrib><creatorcontrib>Tolmachev, Yuriy V.</creatorcontrib><creatorcontrib>Keblinski, Pawel</creatorcontrib><creatorcontrib>Hu, Lin-wen</creatorcontrib><creatorcontrib>Alvarado, Jorge L.</creatorcontrib><creatorcontrib>Bang, In Cheol</creatorcontrib><creatorcontrib>Bishnoi, Sandra W.</creatorcontrib><creatorcontrib>Bonetti, Marco</creatorcontrib><creatorcontrib>Botz, Frank</creatorcontrib><creatorcontrib>Cecere, Anselmo</creatorcontrib><creatorcontrib>Chang, Yun</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Chen, Haisheng</creatorcontrib><creatorcontrib>Chung, Sung Jae</creatorcontrib><creatorcontrib>Chyu, Minking K.</creatorcontrib><creatorcontrib>Das, Sarit K.</creatorcontrib><creatorcontrib>Di Paola, Roberto</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><creatorcontrib>Dubois, Frank</creatorcontrib><creatorcontrib>Dzido, Grzegorz</creatorcontrib><creatorcontrib>Eapen, Jacob</creatorcontrib><creatorcontrib>Escher, Werner</creatorcontrib><creatorcontrib>Funfschilling, Denis</creatorcontrib><creatorcontrib>Galand, Quentin</creatorcontrib><creatorcontrib>Gao, Jinwei</creatorcontrib><creatorcontrib>Gharagozloo, Patricia E.</creatorcontrib><creatorcontrib>Goodson, Kenneth E.</creatorcontrib><creatorcontrib>Gutierrez, Jorge Gustavo</creatorcontrib><creatorcontrib>Hong, Haiping</creatorcontrib><creatorcontrib>Horton, Mark</creatorcontrib><creatorcontrib>Hwang, Kyo Sik</creatorcontrib><creatorcontrib>Iorio, Carlo S.</creatorcontrib><creatorcontrib>Jang, Seok Pil</creatorcontrib><creatorcontrib>Jarzebski, Andrzej B.</creatorcontrib><creatorcontrib>Jiang, Yiran</creatorcontrib><creatorcontrib>Jin, Liwen</creatorcontrib><creatorcontrib>Kabelac, Stephan</creatorcontrib><creatorcontrib>Kamath, Aravind</creatorcontrib><creatorcontrib>Kedzierski, Mark A.</creatorcontrib><creatorcontrib>Kieng, Lim Geok</creatorcontrib><creatorcontrib>Kim, Chongyoup</creatorcontrib><creatorcontrib>Kim, Ji-Hyun</creatorcontrib><creatorcontrib>Kim, Seokwon</creatorcontrib><creatorcontrib>Lee, Seung Hyun</creatorcontrib><creatorcontrib>Leong, Kai Choong</creatorcontrib><creatorcontrib>Manna, Indranil</creatorcontrib><creatorcontrib>Michel, Bruno</creatorcontrib><creatorcontrib>Ni, Rui</creatorcontrib><creatorcontrib>Patel, Hrishikesh E.</creatorcontrib><creatorcontrib>Philip, John</creatorcontrib><creatorcontrib>Poulikakos, Dimos</creatorcontrib><creatorcontrib>Reynaud, Cecile</creatorcontrib><creatorcontrib>Savino, Raffaele</creatorcontrib><creatorcontrib>Singh, Pawan K.</creatorcontrib><creatorcontrib>Song, Pengxiang</creatorcontrib><creatorcontrib>Sundararajan, Thirumalachari</creatorcontrib><creatorcontrib>Timofeeva, Elena</creatorcontrib><creatorcontrib>Tritcak, Todd</creatorcontrib><creatorcontrib>Turanov, Aleksandr N.</creatorcontrib><creatorcontrib>Van Vaerenbergh, Stefan</creatorcontrib><creatorcontrib>Wen, Dongsheng</creatorcontrib><creatorcontrib>Witharana, Sanjeeva</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><creatorcontrib>Yeh, Wei-Hsun</creatorcontrib><creatorcontrib>Zhao, Xiao-Zheng</creatorcontrib><creatorcontrib>Zhou, Sheng-Qi</creatorcontrib><title>A benchmark study on the thermal conductivity of nanofluids</title><title>Journal of applied physics</title><description>This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids," was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan [ J. Appl. Phys. 81 , 6692 ( 1997 )] , was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1j8tKxDAUhoMoWEcXvkG2Ljrm3gRBKIM3GHCj65DmwkQ7qTSpMG9vxxncuTjnLM7Hz_8BcI3REiNBb_GSEsYpRSegwkiquuEcnYIKIYJrqRp1Di5y_kAIY0lVBe5a2PlkN1szfsJcJreDQ4Jl4_czbk0P7ZDcZEv8jmX-BZhMGkI_RZcvwVkwffZXx7sA748Pb6vnev369LJq17WlkpeadIYbKpyat-GcESVFwzqrLOFCEGUCFkaJzjcdb4LwhrHgmKdCksYZEugC3Bxy7TjkPPqgv8Y4F95pjPTeWmN9tJ7Z-wObbSymxCH9D7f6T13_qush0R-bDV7r</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Buongiorno, Jacopo</creator><creator>Venerus, David C.</creator><creator>Prabhat, Naveen</creator><creator>McKrell, Thomas</creator><creator>Townsend, Jessica</creator><creator>Christianson, Rebecca</creator><creator>Tolmachev, Yuriy V.</creator><creator>Keblinski, Pawel</creator><creator>Hu, Lin-wen</creator><creator>Alvarado, Jorge L.</creator><creator>Bang, In Cheol</creator><creator>Bishnoi, Sandra W.</creator><creator>Bonetti, Marco</creator><creator>Botz, Frank</creator><creator>Cecere, Anselmo</creator><creator>Chang, Yun</creator><creator>Chen, Gang</creator><creator>Chen, Haisheng</creator><creator>Chung, Sung Jae</creator><creator>Chyu, Minking K.</creator><creator>Das, Sarit K.</creator><creator>Di Paola, Roberto</creator><creator>Ding, Yulong</creator><creator>Dubois, Frank</creator><creator>Dzido, Grzegorz</creator><creator>Eapen, Jacob</creator><creator>Escher, Werner</creator><creator>Funfschilling, Denis</creator><creator>Galand, Quentin</creator><creator>Gao, Jinwei</creator><creator>Gharagozloo, Patricia E.</creator><creator>Goodson, Kenneth E.</creator><creator>Gutierrez, Jorge Gustavo</creator><creator>Hong, Haiping</creator><creator>Horton, Mark</creator><creator>Hwang, Kyo Sik</creator><creator>Iorio, Carlo S.</creator><creator>Jang, Seok Pil</creator><creator>Jarzebski, Andrzej B.</creator><creator>Jiang, Yiran</creator><creator>Jin, Liwen</creator><creator>Kabelac, Stephan</creator><creator>Kamath, Aravind</creator><creator>Kedzierski, Mark A.</creator><creator>Kieng, Lim Geok</creator><creator>Kim, Chongyoup</creator><creator>Kim, Ji-Hyun</creator><creator>Kim, Seokwon</creator><creator>Lee, Seung Hyun</creator><creator>Leong, Kai Choong</creator><creator>Manna, Indranil</creator><creator>Michel, Bruno</creator><creator>Ni, Rui</creator><creator>Patel, Hrishikesh E.</creator><creator>Philip, John</creator><creator>Poulikakos, Dimos</creator><creator>Reynaud, Cecile</creator><creator>Savino, Raffaele</creator><creator>Singh, Pawan K.</creator><creator>Song, Pengxiang</creator><creator>Sundararajan, Thirumalachari</creator><creator>Timofeeva, Elena</creator><creator>Tritcak, Todd</creator><creator>Turanov, Aleksandr N.</creator><creator>Van Vaerenbergh, Stefan</creator><creator>Wen, Dongsheng</creator><creator>Witharana, Sanjeeva</creator><creator>Yang, Chun</creator><creator>Yeh, Wei-Hsun</creator><creator>Zhao, Xiao-Zheng</creator><creator>Zhou, Sheng-Qi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091101</creationdate><title>A benchmark study on the thermal conductivity of nanofluids</title><author>Buongiorno, Jacopo ; Venerus, David C. ; Prabhat, Naveen ; McKrell, Thomas ; Townsend, Jessica ; Christianson, Rebecca ; Tolmachev, Yuriy V. ; Keblinski, Pawel ; Hu, Lin-wen ; Alvarado, Jorge L. ; Bang, In Cheol ; Bishnoi, Sandra W. ; Bonetti, Marco ; Botz, Frank ; Cecere, Anselmo ; Chang, Yun ; Chen, Gang ; Chen, Haisheng ; Chung, Sung Jae ; Chyu, Minking K. ; Das, Sarit K. ; Di Paola, Roberto ; Ding, Yulong ; Dubois, Frank ; Dzido, Grzegorz ; Eapen, Jacob ; Escher, Werner ; Funfschilling, Denis ; Galand, Quentin ; Gao, Jinwei ; Gharagozloo, Patricia E. ; Goodson, Kenneth E. ; Gutierrez, Jorge Gustavo ; Hong, Haiping ; Horton, Mark ; Hwang, Kyo Sik ; Iorio, Carlo S. ; Jang, Seok Pil ; Jarzebski, Andrzej B. ; Jiang, Yiran ; Jin, Liwen ; Kabelac, Stephan ; Kamath, Aravind ; Kedzierski, Mark A. ; Kieng, Lim Geok ; Kim, Chongyoup ; Kim, Ji-Hyun ; Kim, Seokwon ; Lee, Seung Hyun ; Leong, Kai Choong ; Manna, Indranil ; Michel, Bruno ; Ni, Rui ; Patel, Hrishikesh E. ; Philip, John ; Poulikakos, Dimos ; Reynaud, Cecile ; Savino, Raffaele ; Singh, Pawan K. ; Song, Pengxiang ; Sundararajan, Thirumalachari ; Timofeeva, Elena ; Tritcak, Todd ; Turanov, Aleksandr N. ; Van Vaerenbergh, Stefan ; Wen, Dongsheng ; Witharana, Sanjeeva ; Yang, Chun ; Yeh, Wei-Hsun ; Zhao, Xiao-Zheng ; Zhou, Sheng-Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-2ba5a36d95a3a554298674bc9c256629af16a96be7b57f6ea44fd4e36827da2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buongiorno, Jacopo</creatorcontrib><creatorcontrib>Venerus, David C.</creatorcontrib><creatorcontrib>Prabhat, Naveen</creatorcontrib><creatorcontrib>McKrell, Thomas</creatorcontrib><creatorcontrib>Townsend, Jessica</creatorcontrib><creatorcontrib>Christianson, Rebecca</creatorcontrib><creatorcontrib>Tolmachev, Yuriy V.</creatorcontrib><creatorcontrib>Keblinski, Pawel</creatorcontrib><creatorcontrib>Hu, Lin-wen</creatorcontrib><creatorcontrib>Alvarado, Jorge L.</creatorcontrib><creatorcontrib>Bang, In Cheol</creatorcontrib><creatorcontrib>Bishnoi, Sandra W.</creatorcontrib><creatorcontrib>Bonetti, Marco</creatorcontrib><creatorcontrib>Botz, Frank</creatorcontrib><creatorcontrib>Cecere, Anselmo</creatorcontrib><creatorcontrib>Chang, Yun</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Chen, Haisheng</creatorcontrib><creatorcontrib>Chung, Sung Jae</creatorcontrib><creatorcontrib>Chyu, Minking K.</creatorcontrib><creatorcontrib>Das, Sarit K.</creatorcontrib><creatorcontrib>Di Paola, Roberto</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><creatorcontrib>Dubois, Frank</creatorcontrib><creatorcontrib>Dzido, Grzegorz</creatorcontrib><creatorcontrib>Eapen, Jacob</creatorcontrib><creatorcontrib>Escher, Werner</creatorcontrib><creatorcontrib>Funfschilling, Denis</creatorcontrib><creatorcontrib>Galand, Quentin</creatorcontrib><creatorcontrib>Gao, Jinwei</creatorcontrib><creatorcontrib>Gharagozloo, Patricia E.</creatorcontrib><creatorcontrib>Goodson, Kenneth E.</creatorcontrib><creatorcontrib>Gutierrez, Jorge Gustavo</creatorcontrib><creatorcontrib>Hong, Haiping</creatorcontrib><creatorcontrib>Horton, Mark</creatorcontrib><creatorcontrib>Hwang, Kyo Sik</creatorcontrib><creatorcontrib>Iorio, Carlo S.</creatorcontrib><creatorcontrib>Jang, Seok Pil</creatorcontrib><creatorcontrib>Jarzebski, Andrzej B.</creatorcontrib><creatorcontrib>Jiang, Yiran</creatorcontrib><creatorcontrib>Jin, Liwen</creatorcontrib><creatorcontrib>Kabelac, Stephan</creatorcontrib><creatorcontrib>Kamath, Aravind</creatorcontrib><creatorcontrib>Kedzierski, Mark A.</creatorcontrib><creatorcontrib>Kieng, Lim Geok</creatorcontrib><creatorcontrib>Kim, Chongyoup</creatorcontrib><creatorcontrib>Kim, Ji-Hyun</creatorcontrib><creatorcontrib>Kim, Seokwon</creatorcontrib><creatorcontrib>Lee, Seung Hyun</creatorcontrib><creatorcontrib>Leong, Kai Choong</creatorcontrib><creatorcontrib>Manna, Indranil</creatorcontrib><creatorcontrib>Michel, Bruno</creatorcontrib><creatorcontrib>Ni, Rui</creatorcontrib><creatorcontrib>Patel, Hrishikesh E.</creatorcontrib><creatorcontrib>Philip, John</creatorcontrib><creatorcontrib>Poulikakos, Dimos</creatorcontrib><creatorcontrib>Reynaud, Cecile</creatorcontrib><creatorcontrib>Savino, Raffaele</creatorcontrib><creatorcontrib>Singh, Pawan K.</creatorcontrib><creatorcontrib>Song, Pengxiang</creatorcontrib><creatorcontrib>Sundararajan, Thirumalachari</creatorcontrib><creatorcontrib>Timofeeva, Elena</creatorcontrib><creatorcontrib>Tritcak, Todd</creatorcontrib><creatorcontrib>Turanov, Aleksandr N.</creatorcontrib><creatorcontrib>Van Vaerenbergh, Stefan</creatorcontrib><creatorcontrib>Wen, Dongsheng</creatorcontrib><creatorcontrib>Witharana, Sanjeeva</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><creatorcontrib>Yeh, Wei-Hsun</creatorcontrib><creatorcontrib>Zhao, Xiao-Zheng</creatorcontrib><creatorcontrib>Zhou, Sheng-Qi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buongiorno, Jacopo</au><au>Venerus, David C.</au><au>Prabhat, Naveen</au><au>McKrell, Thomas</au><au>Townsend, Jessica</au><au>Christianson, Rebecca</au><au>Tolmachev, Yuriy V.</au><au>Keblinski, Pawel</au><au>Hu, Lin-wen</au><au>Alvarado, Jorge L.</au><au>Bang, In Cheol</au><au>Bishnoi, Sandra W.</au><au>Bonetti, Marco</au><au>Botz, Frank</au><au>Cecere, Anselmo</au><au>Chang, Yun</au><au>Chen, Gang</au><au>Chen, Haisheng</au><au>Chung, Sung Jae</au><au>Chyu, Minking K.</au><au>Das, Sarit K.</au><au>Di Paola, Roberto</au><au>Ding, Yulong</au><au>Dubois, Frank</au><au>Dzido, Grzegorz</au><au>Eapen, Jacob</au><au>Escher, Werner</au><au>Funfschilling, Denis</au><au>Galand, Quentin</au><au>Gao, Jinwei</au><au>Gharagozloo, Patricia E.</au><au>Goodson, Kenneth E.</au><au>Gutierrez, Jorge Gustavo</au><au>Hong, Haiping</au><au>Horton, Mark</au><au>Hwang, Kyo Sik</au><au>Iorio, Carlo S.</au><au>Jang, Seok Pil</au><au>Jarzebski, Andrzej B.</au><au>Jiang, Yiran</au><au>Jin, Liwen</au><au>Kabelac, Stephan</au><au>Kamath, Aravind</au><au>Kedzierski, Mark A.</au><au>Kieng, Lim Geok</au><au>Kim, Chongyoup</au><au>Kim, Ji-Hyun</au><au>Kim, Seokwon</au><au>Lee, Seung Hyun</au><au>Leong, Kai Choong</au><au>Manna, Indranil</au><au>Michel, Bruno</au><au>Ni, Rui</au><au>Patel, Hrishikesh E.</au><au>Philip, John</au><au>Poulikakos, Dimos</au><au>Reynaud, Cecile</au><au>Savino, Raffaele</au><au>Singh, Pawan K.</au><au>Song, Pengxiang</au><au>Sundararajan, Thirumalachari</au><au>Timofeeva, Elena</au><au>Tritcak, Todd</au><au>Turanov, Aleksandr N.</au><au>Van Vaerenbergh, Stefan</au><au>Wen, Dongsheng</au><au>Witharana, Sanjeeva</au><au>Yang, Chun</au><au>Yeh, Wei-Hsun</au><au>Zhao, Xiao-Zheng</au><au>Zhou, Sheng-Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A benchmark study on the thermal conductivity of nanofluids</atitle><jtitle>Journal of applied physics</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>106</volume><issue>9</issue><spage>094312</spage><epage>094312-14</epage><pages>094312-094312-14</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids," was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan [ J. Appl. Phys. 81 , 6692 ( 1997 )] , was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3245330</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2009-11, Vol.106 (9), p.094312-094312-14
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_3245330
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title A benchmark study on the thermal conductivity of nanofluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20benchmark%20study%20on%20the%20thermal%20conductivity%20of%20nanofluids&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Buongiorno,%20Jacopo&rft.date=2009-11-01&rft.volume=106&rft.issue=9&rft.spage=094312&rft.epage=094312-14&rft.pages=094312-094312-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3245330&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true