A benchmark study on the thermal conductivity of nanofluids
This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids," was measured by over 30 organizations worldwide, using a variety of experime...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2009-11, Vol.106 (9), p.094312-094312-14 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 094312-14 |
---|---|
container_issue | 9 |
container_start_page | 094312 |
container_title | Journal of applied physics |
container_volume | 106 |
creator | Buongiorno, Jacopo Venerus, David C. Prabhat, Naveen McKrell, Thomas Townsend, Jessica Christianson, Rebecca Tolmachev, Yuriy V. Keblinski, Pawel Hu, Lin-wen Alvarado, Jorge L. Bang, In Cheol Bishnoi, Sandra W. Bonetti, Marco Botz, Frank Cecere, Anselmo Chang, Yun Chen, Gang Chen, Haisheng Chung, Sung Jae Chyu, Minking K. Das, Sarit K. Di Paola, Roberto Ding, Yulong Dubois, Frank Dzido, Grzegorz Eapen, Jacob Escher, Werner Funfschilling, Denis Galand, Quentin Gao, Jinwei Gharagozloo, Patricia E. Goodson, Kenneth E. Gutierrez, Jorge Gustavo Hong, Haiping Horton, Mark Hwang, Kyo Sik Iorio, Carlo S. Jang, Seok Pil Jarzebski, Andrzej B. Jiang, Yiran Jin, Liwen Kabelac, Stephan Kamath, Aravind Kedzierski, Mark A. Kieng, Lim Geok Kim, Chongyoup Kim, Ji-Hyun Kim, Seokwon Lee, Seung Hyun Leong, Kai Choong Manna, Indranil Michel, Bruno Ni, Rui Patel, Hrishikesh E. Philip, John Poulikakos, Dimos Reynaud, Cecile Savino, Raffaele Singh, Pawan K. Song, Pengxiang Sundararajan, Thirumalachari Timofeeva, Elena Tritcak, Todd Turanov, Aleksandr N. Van Vaerenbergh, Stefan Wen, Dongsheng Witharana, Sanjeeva Yang, Chun Yeh, Wei-Hsun Zhao, Xiao-Zheng Zhou, Sheng-Qi |
description | This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids," was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by
Nan
[
J. Appl. Phys.
81
,
6692
(
1997
)]
, was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise. |
doi_str_mv | 10.1063/1.3245330 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3245330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-2ba5a36d95a3a554298674bc9c256629af16a96be7b57f6ea44fd4e36827da2f3</originalsourceid><addsrcrecordid>eNp1j8tKxDAUhoMoWEcXvkG2Ljrm3gRBKIM3GHCj65DmwkQ7qTSpMG9vxxncuTjnLM7Hz_8BcI3REiNBb_GSEsYpRSegwkiquuEcnYIKIYJrqRp1Di5y_kAIY0lVBe5a2PlkN1szfsJcJreDQ4Jl4_czbk0P7ZDcZEv8jmX-BZhMGkI_RZcvwVkwffZXx7sA748Pb6vnev369LJq17WlkpeadIYbKpyat-GcESVFwzqrLOFCEGUCFkaJzjcdb4LwhrHgmKdCksYZEugC3Bxy7TjkPPqgv8Y4F95pjPTeWmN9tJ7Z-wObbSymxCH9D7f6T13_qush0R-bDV7r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A benchmark study on the thermal conductivity of nanofluids</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Buongiorno, Jacopo ; Venerus, David C. ; Prabhat, Naveen ; McKrell, Thomas ; Townsend, Jessica ; Christianson, Rebecca ; Tolmachev, Yuriy V. ; Keblinski, Pawel ; Hu, Lin-wen ; Alvarado, Jorge L. ; Bang, In Cheol ; Bishnoi, Sandra W. ; Bonetti, Marco ; Botz, Frank ; Cecere, Anselmo ; Chang, Yun ; Chen, Gang ; Chen, Haisheng ; Chung, Sung Jae ; Chyu, Minking K. ; Das, Sarit K. ; Di Paola, Roberto ; Ding, Yulong ; Dubois, Frank ; Dzido, Grzegorz ; Eapen, Jacob ; Escher, Werner ; Funfschilling, Denis ; Galand, Quentin ; Gao, Jinwei ; Gharagozloo, Patricia E. ; Goodson, Kenneth E. ; Gutierrez, Jorge Gustavo ; Hong, Haiping ; Horton, Mark ; Hwang, Kyo Sik ; Iorio, Carlo S. ; Jang, Seok Pil ; Jarzebski, Andrzej B. ; Jiang, Yiran ; Jin, Liwen ; Kabelac, Stephan ; Kamath, Aravind ; Kedzierski, Mark A. ; Kieng, Lim Geok ; Kim, Chongyoup ; Kim, Ji-Hyun ; Kim, Seokwon ; Lee, Seung Hyun ; Leong, Kai Choong ; Manna, Indranil ; Michel, Bruno ; Ni, Rui ; Patel, Hrishikesh E. ; Philip, John ; Poulikakos, Dimos ; Reynaud, Cecile ; Savino, Raffaele ; Singh, Pawan K. ; Song, Pengxiang ; Sundararajan, Thirumalachari ; Timofeeva, Elena ; Tritcak, Todd ; Turanov, Aleksandr N. ; Van Vaerenbergh, Stefan ; Wen, Dongsheng ; Witharana, Sanjeeva ; Yang, Chun ; Yeh, Wei-Hsun ; Zhao, Xiao-Zheng ; Zhou, Sheng-Qi</creator><creatorcontrib>Buongiorno, Jacopo ; Venerus, David C. ; Prabhat, Naveen ; McKrell, Thomas ; Townsend, Jessica ; Christianson, Rebecca ; Tolmachev, Yuriy V. ; Keblinski, Pawel ; Hu, Lin-wen ; Alvarado, Jorge L. ; Bang, In Cheol ; Bishnoi, Sandra W. ; Bonetti, Marco ; Botz, Frank ; Cecere, Anselmo ; Chang, Yun ; Chen, Gang ; Chen, Haisheng ; Chung, Sung Jae ; Chyu, Minking K. ; Das, Sarit K. ; Di Paola, Roberto ; Ding, Yulong ; Dubois, Frank ; Dzido, Grzegorz ; Eapen, Jacob ; Escher, Werner ; Funfschilling, Denis ; Galand, Quentin ; Gao, Jinwei ; Gharagozloo, Patricia E. ; Goodson, Kenneth E. ; Gutierrez, Jorge Gustavo ; Hong, Haiping ; Horton, Mark ; Hwang, Kyo Sik ; Iorio, Carlo S. ; Jang, Seok Pil ; Jarzebski, Andrzej B. ; Jiang, Yiran ; Jin, Liwen ; Kabelac, Stephan ; Kamath, Aravind ; Kedzierski, Mark A. ; Kieng, Lim Geok ; Kim, Chongyoup ; Kim, Ji-Hyun ; Kim, Seokwon ; Lee, Seung Hyun ; Leong, Kai Choong ; Manna, Indranil ; Michel, Bruno ; Ni, Rui ; Patel, Hrishikesh E. ; Philip, John ; Poulikakos, Dimos ; Reynaud, Cecile ; Savino, Raffaele ; Singh, Pawan K. ; Song, Pengxiang ; Sundararajan, Thirumalachari ; Timofeeva, Elena ; Tritcak, Todd ; Turanov, Aleksandr N. ; Van Vaerenbergh, Stefan ; Wen, Dongsheng ; Witharana, Sanjeeva ; Yang, Chun ; Yeh, Wei-Hsun ; Zhao, Xiao-Zheng ; Zhou, Sheng-Qi</creatorcontrib><description>This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids," was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by
Nan
[
J. Appl. Phys.
81
,
6692
(
1997
)]
, was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3245330</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2009-11, Vol.106 (9), p.094312-094312-14</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-2ba5a36d95a3a554298674bc9c256629af16a96be7b57f6ea44fd4e36827da2f3</citedby><cites>FETCH-LOGICAL-c385t-2ba5a36d95a3a554298674bc9c256629af16a96be7b57f6ea44fd4e36827da2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3245330$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4497,27903,27904,76131,76137</link.rule.ids></links><search><creatorcontrib>Buongiorno, Jacopo</creatorcontrib><creatorcontrib>Venerus, David C.</creatorcontrib><creatorcontrib>Prabhat, Naveen</creatorcontrib><creatorcontrib>McKrell, Thomas</creatorcontrib><creatorcontrib>Townsend, Jessica</creatorcontrib><creatorcontrib>Christianson, Rebecca</creatorcontrib><creatorcontrib>Tolmachev, Yuriy V.</creatorcontrib><creatorcontrib>Keblinski, Pawel</creatorcontrib><creatorcontrib>Hu, Lin-wen</creatorcontrib><creatorcontrib>Alvarado, Jorge L.</creatorcontrib><creatorcontrib>Bang, In Cheol</creatorcontrib><creatorcontrib>Bishnoi, Sandra W.</creatorcontrib><creatorcontrib>Bonetti, Marco</creatorcontrib><creatorcontrib>Botz, Frank</creatorcontrib><creatorcontrib>Cecere, Anselmo</creatorcontrib><creatorcontrib>Chang, Yun</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Chen, Haisheng</creatorcontrib><creatorcontrib>Chung, Sung Jae</creatorcontrib><creatorcontrib>Chyu, Minking K.</creatorcontrib><creatorcontrib>Das, Sarit K.</creatorcontrib><creatorcontrib>Di Paola, Roberto</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><creatorcontrib>Dubois, Frank</creatorcontrib><creatorcontrib>Dzido, Grzegorz</creatorcontrib><creatorcontrib>Eapen, Jacob</creatorcontrib><creatorcontrib>Escher, Werner</creatorcontrib><creatorcontrib>Funfschilling, Denis</creatorcontrib><creatorcontrib>Galand, Quentin</creatorcontrib><creatorcontrib>Gao, Jinwei</creatorcontrib><creatorcontrib>Gharagozloo, Patricia E.</creatorcontrib><creatorcontrib>Goodson, Kenneth E.</creatorcontrib><creatorcontrib>Gutierrez, Jorge Gustavo</creatorcontrib><creatorcontrib>Hong, Haiping</creatorcontrib><creatorcontrib>Horton, Mark</creatorcontrib><creatorcontrib>Hwang, Kyo Sik</creatorcontrib><creatorcontrib>Iorio, Carlo S.</creatorcontrib><creatorcontrib>Jang, Seok Pil</creatorcontrib><creatorcontrib>Jarzebski, Andrzej B.</creatorcontrib><creatorcontrib>Jiang, Yiran</creatorcontrib><creatorcontrib>Jin, Liwen</creatorcontrib><creatorcontrib>Kabelac, Stephan</creatorcontrib><creatorcontrib>Kamath, Aravind</creatorcontrib><creatorcontrib>Kedzierski, Mark A.</creatorcontrib><creatorcontrib>Kieng, Lim Geok</creatorcontrib><creatorcontrib>Kim, Chongyoup</creatorcontrib><creatorcontrib>Kim, Ji-Hyun</creatorcontrib><creatorcontrib>Kim, Seokwon</creatorcontrib><creatorcontrib>Lee, Seung Hyun</creatorcontrib><creatorcontrib>Leong, Kai Choong</creatorcontrib><creatorcontrib>Manna, Indranil</creatorcontrib><creatorcontrib>Michel, Bruno</creatorcontrib><creatorcontrib>Ni, Rui</creatorcontrib><creatorcontrib>Patel, Hrishikesh E.</creatorcontrib><creatorcontrib>Philip, John</creatorcontrib><creatorcontrib>Poulikakos, Dimos</creatorcontrib><creatorcontrib>Reynaud, Cecile</creatorcontrib><creatorcontrib>Savino, Raffaele</creatorcontrib><creatorcontrib>Singh, Pawan K.</creatorcontrib><creatorcontrib>Song, Pengxiang</creatorcontrib><creatorcontrib>Sundararajan, Thirumalachari</creatorcontrib><creatorcontrib>Timofeeva, Elena</creatorcontrib><creatorcontrib>Tritcak, Todd</creatorcontrib><creatorcontrib>Turanov, Aleksandr N.</creatorcontrib><creatorcontrib>Van Vaerenbergh, Stefan</creatorcontrib><creatorcontrib>Wen, Dongsheng</creatorcontrib><creatorcontrib>Witharana, Sanjeeva</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><creatorcontrib>Yeh, Wei-Hsun</creatorcontrib><creatorcontrib>Zhao, Xiao-Zheng</creatorcontrib><creatorcontrib>Zhou, Sheng-Qi</creatorcontrib><title>A benchmark study on the thermal conductivity of nanofluids</title><title>Journal of applied physics</title><description>This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids," was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by
Nan
[
J. Appl. Phys.
81
,
6692
(
1997
)]
, was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1j8tKxDAUhoMoWEcXvkG2Ljrm3gRBKIM3GHCj65DmwkQ7qTSpMG9vxxncuTjnLM7Hz_8BcI3REiNBb_GSEsYpRSegwkiquuEcnYIKIYJrqRp1Di5y_kAIY0lVBe5a2PlkN1szfsJcJreDQ4Jl4_czbk0P7ZDcZEv8jmX-BZhMGkI_RZcvwVkwffZXx7sA748Pb6vnev369LJq17WlkpeadIYbKpyat-GcESVFwzqrLOFCEGUCFkaJzjcdb4LwhrHgmKdCksYZEugC3Bxy7TjkPPqgv8Y4F95pjPTeWmN9tJ7Z-wObbSymxCH9D7f6T13_qush0R-bDV7r</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Buongiorno, Jacopo</creator><creator>Venerus, David C.</creator><creator>Prabhat, Naveen</creator><creator>McKrell, Thomas</creator><creator>Townsend, Jessica</creator><creator>Christianson, Rebecca</creator><creator>Tolmachev, Yuriy V.</creator><creator>Keblinski, Pawel</creator><creator>Hu, Lin-wen</creator><creator>Alvarado, Jorge L.</creator><creator>Bang, In Cheol</creator><creator>Bishnoi, Sandra W.</creator><creator>Bonetti, Marco</creator><creator>Botz, Frank</creator><creator>Cecere, Anselmo</creator><creator>Chang, Yun</creator><creator>Chen, Gang</creator><creator>Chen, Haisheng</creator><creator>Chung, Sung Jae</creator><creator>Chyu, Minking K.</creator><creator>Das, Sarit K.</creator><creator>Di Paola, Roberto</creator><creator>Ding, Yulong</creator><creator>Dubois, Frank</creator><creator>Dzido, Grzegorz</creator><creator>Eapen, Jacob</creator><creator>Escher, Werner</creator><creator>Funfschilling, Denis</creator><creator>Galand, Quentin</creator><creator>Gao, Jinwei</creator><creator>Gharagozloo, Patricia E.</creator><creator>Goodson, Kenneth E.</creator><creator>Gutierrez, Jorge Gustavo</creator><creator>Hong, Haiping</creator><creator>Horton, Mark</creator><creator>Hwang, Kyo Sik</creator><creator>Iorio, Carlo S.</creator><creator>Jang, Seok Pil</creator><creator>Jarzebski, Andrzej B.</creator><creator>Jiang, Yiran</creator><creator>Jin, Liwen</creator><creator>Kabelac, Stephan</creator><creator>Kamath, Aravind</creator><creator>Kedzierski, Mark A.</creator><creator>Kieng, Lim Geok</creator><creator>Kim, Chongyoup</creator><creator>Kim, Ji-Hyun</creator><creator>Kim, Seokwon</creator><creator>Lee, Seung Hyun</creator><creator>Leong, Kai Choong</creator><creator>Manna, Indranil</creator><creator>Michel, Bruno</creator><creator>Ni, Rui</creator><creator>Patel, Hrishikesh E.</creator><creator>Philip, John</creator><creator>Poulikakos, Dimos</creator><creator>Reynaud, Cecile</creator><creator>Savino, Raffaele</creator><creator>Singh, Pawan K.</creator><creator>Song, Pengxiang</creator><creator>Sundararajan, Thirumalachari</creator><creator>Timofeeva, Elena</creator><creator>Tritcak, Todd</creator><creator>Turanov, Aleksandr N.</creator><creator>Van Vaerenbergh, Stefan</creator><creator>Wen, Dongsheng</creator><creator>Witharana, Sanjeeva</creator><creator>Yang, Chun</creator><creator>Yeh, Wei-Hsun</creator><creator>Zhao, Xiao-Zheng</creator><creator>Zhou, Sheng-Qi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091101</creationdate><title>A benchmark study on the thermal conductivity of nanofluids</title><author>Buongiorno, Jacopo ; Venerus, David C. ; Prabhat, Naveen ; McKrell, Thomas ; Townsend, Jessica ; Christianson, Rebecca ; Tolmachev, Yuriy V. ; Keblinski, Pawel ; Hu, Lin-wen ; Alvarado, Jorge L. ; Bang, In Cheol ; Bishnoi, Sandra W. ; Bonetti, Marco ; Botz, Frank ; Cecere, Anselmo ; Chang, Yun ; Chen, Gang ; Chen, Haisheng ; Chung, Sung Jae ; Chyu, Minking K. ; Das, Sarit K. ; Di Paola, Roberto ; Ding, Yulong ; Dubois, Frank ; Dzido, Grzegorz ; Eapen, Jacob ; Escher, Werner ; Funfschilling, Denis ; Galand, Quentin ; Gao, Jinwei ; Gharagozloo, Patricia E. ; Goodson, Kenneth E. ; Gutierrez, Jorge Gustavo ; Hong, Haiping ; Horton, Mark ; Hwang, Kyo Sik ; Iorio, Carlo S. ; Jang, Seok Pil ; Jarzebski, Andrzej B. ; Jiang, Yiran ; Jin, Liwen ; Kabelac, Stephan ; Kamath, Aravind ; Kedzierski, Mark A. ; Kieng, Lim Geok ; Kim, Chongyoup ; Kim, Ji-Hyun ; Kim, Seokwon ; Lee, Seung Hyun ; Leong, Kai Choong ; Manna, Indranil ; Michel, Bruno ; Ni, Rui ; Patel, Hrishikesh E. ; Philip, John ; Poulikakos, Dimos ; Reynaud, Cecile ; Savino, Raffaele ; Singh, Pawan K. ; Song, Pengxiang ; Sundararajan, Thirumalachari ; Timofeeva, Elena ; Tritcak, Todd ; Turanov, Aleksandr N. ; Van Vaerenbergh, Stefan ; Wen, Dongsheng ; Witharana, Sanjeeva ; Yang, Chun ; Yeh, Wei-Hsun ; Zhao, Xiao-Zheng ; Zhou, Sheng-Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-2ba5a36d95a3a554298674bc9c256629af16a96be7b57f6ea44fd4e36827da2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buongiorno, Jacopo</creatorcontrib><creatorcontrib>Venerus, David C.</creatorcontrib><creatorcontrib>Prabhat, Naveen</creatorcontrib><creatorcontrib>McKrell, Thomas</creatorcontrib><creatorcontrib>Townsend, Jessica</creatorcontrib><creatorcontrib>Christianson, Rebecca</creatorcontrib><creatorcontrib>Tolmachev, Yuriy V.</creatorcontrib><creatorcontrib>Keblinski, Pawel</creatorcontrib><creatorcontrib>Hu, Lin-wen</creatorcontrib><creatorcontrib>Alvarado, Jorge L.</creatorcontrib><creatorcontrib>Bang, In Cheol</creatorcontrib><creatorcontrib>Bishnoi, Sandra W.</creatorcontrib><creatorcontrib>Bonetti, Marco</creatorcontrib><creatorcontrib>Botz, Frank</creatorcontrib><creatorcontrib>Cecere, Anselmo</creatorcontrib><creatorcontrib>Chang, Yun</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Chen, Haisheng</creatorcontrib><creatorcontrib>Chung, Sung Jae</creatorcontrib><creatorcontrib>Chyu, Minking K.</creatorcontrib><creatorcontrib>Das, Sarit K.</creatorcontrib><creatorcontrib>Di Paola, Roberto</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><creatorcontrib>Dubois, Frank</creatorcontrib><creatorcontrib>Dzido, Grzegorz</creatorcontrib><creatorcontrib>Eapen, Jacob</creatorcontrib><creatorcontrib>Escher, Werner</creatorcontrib><creatorcontrib>Funfschilling, Denis</creatorcontrib><creatorcontrib>Galand, Quentin</creatorcontrib><creatorcontrib>Gao, Jinwei</creatorcontrib><creatorcontrib>Gharagozloo, Patricia E.</creatorcontrib><creatorcontrib>Goodson, Kenneth E.</creatorcontrib><creatorcontrib>Gutierrez, Jorge Gustavo</creatorcontrib><creatorcontrib>Hong, Haiping</creatorcontrib><creatorcontrib>Horton, Mark</creatorcontrib><creatorcontrib>Hwang, Kyo Sik</creatorcontrib><creatorcontrib>Iorio, Carlo S.</creatorcontrib><creatorcontrib>Jang, Seok Pil</creatorcontrib><creatorcontrib>Jarzebski, Andrzej B.</creatorcontrib><creatorcontrib>Jiang, Yiran</creatorcontrib><creatorcontrib>Jin, Liwen</creatorcontrib><creatorcontrib>Kabelac, Stephan</creatorcontrib><creatorcontrib>Kamath, Aravind</creatorcontrib><creatorcontrib>Kedzierski, Mark A.</creatorcontrib><creatorcontrib>Kieng, Lim Geok</creatorcontrib><creatorcontrib>Kim, Chongyoup</creatorcontrib><creatorcontrib>Kim, Ji-Hyun</creatorcontrib><creatorcontrib>Kim, Seokwon</creatorcontrib><creatorcontrib>Lee, Seung Hyun</creatorcontrib><creatorcontrib>Leong, Kai Choong</creatorcontrib><creatorcontrib>Manna, Indranil</creatorcontrib><creatorcontrib>Michel, Bruno</creatorcontrib><creatorcontrib>Ni, Rui</creatorcontrib><creatorcontrib>Patel, Hrishikesh E.</creatorcontrib><creatorcontrib>Philip, John</creatorcontrib><creatorcontrib>Poulikakos, Dimos</creatorcontrib><creatorcontrib>Reynaud, Cecile</creatorcontrib><creatorcontrib>Savino, Raffaele</creatorcontrib><creatorcontrib>Singh, Pawan K.</creatorcontrib><creatorcontrib>Song, Pengxiang</creatorcontrib><creatorcontrib>Sundararajan, Thirumalachari</creatorcontrib><creatorcontrib>Timofeeva, Elena</creatorcontrib><creatorcontrib>Tritcak, Todd</creatorcontrib><creatorcontrib>Turanov, Aleksandr N.</creatorcontrib><creatorcontrib>Van Vaerenbergh, Stefan</creatorcontrib><creatorcontrib>Wen, Dongsheng</creatorcontrib><creatorcontrib>Witharana, Sanjeeva</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><creatorcontrib>Yeh, Wei-Hsun</creatorcontrib><creatorcontrib>Zhao, Xiao-Zheng</creatorcontrib><creatorcontrib>Zhou, Sheng-Qi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buongiorno, Jacopo</au><au>Venerus, David C.</au><au>Prabhat, Naveen</au><au>McKrell, Thomas</au><au>Townsend, Jessica</au><au>Christianson, Rebecca</au><au>Tolmachev, Yuriy V.</au><au>Keblinski, Pawel</au><au>Hu, Lin-wen</au><au>Alvarado, Jorge L.</au><au>Bang, In Cheol</au><au>Bishnoi, Sandra W.</au><au>Bonetti, Marco</au><au>Botz, Frank</au><au>Cecere, Anselmo</au><au>Chang, Yun</au><au>Chen, Gang</au><au>Chen, Haisheng</au><au>Chung, Sung Jae</au><au>Chyu, Minking K.</au><au>Das, Sarit K.</au><au>Di Paola, Roberto</au><au>Ding, Yulong</au><au>Dubois, Frank</au><au>Dzido, Grzegorz</au><au>Eapen, Jacob</au><au>Escher, Werner</au><au>Funfschilling, Denis</au><au>Galand, Quentin</au><au>Gao, Jinwei</au><au>Gharagozloo, Patricia E.</au><au>Goodson, Kenneth E.</au><au>Gutierrez, Jorge Gustavo</au><au>Hong, Haiping</au><au>Horton, Mark</au><au>Hwang, Kyo Sik</au><au>Iorio, Carlo S.</au><au>Jang, Seok Pil</au><au>Jarzebski, Andrzej B.</au><au>Jiang, Yiran</au><au>Jin, Liwen</au><au>Kabelac, Stephan</au><au>Kamath, Aravind</au><au>Kedzierski, Mark A.</au><au>Kieng, Lim Geok</au><au>Kim, Chongyoup</au><au>Kim, Ji-Hyun</au><au>Kim, Seokwon</au><au>Lee, Seung Hyun</au><au>Leong, Kai Choong</au><au>Manna, Indranil</au><au>Michel, Bruno</au><au>Ni, Rui</au><au>Patel, Hrishikesh E.</au><au>Philip, John</au><au>Poulikakos, Dimos</au><au>Reynaud, Cecile</au><au>Savino, Raffaele</au><au>Singh, Pawan K.</au><au>Song, Pengxiang</au><au>Sundararajan, Thirumalachari</au><au>Timofeeva, Elena</au><au>Tritcak, Todd</au><au>Turanov, Aleksandr N.</au><au>Van Vaerenbergh, Stefan</au><au>Wen, Dongsheng</au><au>Witharana, Sanjeeva</au><au>Yang, Chun</au><au>Yeh, Wei-Hsun</au><au>Zhao, Xiao-Zheng</au><au>Zhou, Sheng-Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A benchmark study on the thermal conductivity of nanofluids</atitle><jtitle>Journal of applied physics</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>106</volume><issue>9</issue><spage>094312</spage><epage>094312-14</epage><pages>094312-094312-14</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids," was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by
Nan
[
J. Appl. Phys.
81
,
6692
(
1997
)]
, was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3245330</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2009-11, Vol.106 (9), p.094312-094312-14 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3245330 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
title | A benchmark study on the thermal conductivity of nanofluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20benchmark%20study%20on%20the%20thermal%20conductivity%20of%20nanofluids&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Buongiorno,%20Jacopo&rft.date=2009-11-01&rft.volume=106&rft.issue=9&rft.spage=094312&rft.epage=094312-14&rft.pages=094312-094312-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3245330&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |