Extension of the Bissell–Johnson plasma-sheath model for application to fusion-relevant and general plasmas

This article presents an approach to solving a special Fredholm-type integral equation of the first kind with a particular kernel containing a modified Bessel function for applications in plasma physics. From the physical point of view, the problem was defined by Bissell and Johnson (B&J) [Phys....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2009-09, Vol.16 (9)
Hauptverfasser: Kos, L., Jelić, N., Kuhn, S., Duhovnik, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of plasmas
container_volume 16
creator Kos, L.
Jelić, N.
Kuhn, S.
Duhovnik, J.
description This article presents an approach to solving a special Fredholm-type integral equation of the first kind with a particular kernel containing a modified Bessel function for applications in plasma physics. From the physical point of view, the problem was defined by Bissell and Johnson (B&J) [Phys. Fluids 30, 779 (1987)] as a task to find the potential profile and the ion velocity distribution function in a plane-parallel discharge with a Maxwellian ion source. The B&J model is a generalization of the well-known Tonks–Langmuir (T&L) [Phys. Rev. 34, 876 (1929)] discharge model characterized by a “cold” ion source. Unlike the T&L model, which can be readily solved analytically, attempts to solve the B&J model with a “warm” ion source have been done only numerically. However, the validity of numerical solutions up to date remains constrained to a rather limited range of a crucial independent parameter of the B&J integral equation, which mathematically is the width of a Gaussian distribution and physically represents the ion temperature. It was solved only for moderately warm ion sources. This paper presents the exact numerical solution of the B&J model, which is valid without any restriction regarding the above-mentioned parameter. It is shown that the ion temperature is very different from the temperature of the ion source. The new results with high-temperature ion sources are not only of particular importance for understanding and describing the plasma-sheath boundary in fusion plasmas, but are of considerable interest for discharge problems in general. The eigenvalue of the problem, found analytically by Harrison and Thompson [Proc. Phys. Soc. 74, 145 (1959)] for the particular case of a cold ion source, is here extended to arbitrary ion-source temperatures.
doi_str_mv 10.1063/1.3223556
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3223556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3d07f2d495cb055140fa40d3cc294781c4c21d58c2c5ce2e90417810268812003</originalsourceid><addsrcrecordid>eNp9kEtKBDEQhoMoOI4uvEHAlUKPefZjqcP4YsCNgrsQ04ndkk6aJA668w7e0JPY7Qy6EFxVUfXVB_UDcIjRDKOcnuIZJYRynm-BCUZllRV5wbbHvkBZnrOHXbAX4zNCiOW8nIBu8Zq0i6130BuYGg3P2xi1tZ_vHze-cXFY9FbGTmax0TI1sPO1ttD4AGXf21bJNB4nD83LqMmCtnolXYLS1fBJOx2k3SjiPtgx0kZ9sKlTcH-xuJtfZcvby-v52TJTlBQpozUqDKlZxdUj4hwzZCRDNVWKVKwosWKK4JqXiiiuNNEVYngYI5KXJSYI0Sk4Wnt9TK2Iqk1aNco7p1USBJOSYEoG6nhNqeBjDNqIPrSdDG8CIzGmKbDYpDmwJ2t2lH2__AOvfPgFRV-b_-C_5i-3nYQu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extension of the Bissell–Johnson plasma-sheath model for application to fusion-relevant and general plasmas</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Kos, L. ; Jelić, N. ; Kuhn, S. ; Duhovnik, J.</creator><creatorcontrib>Kos, L. ; Jelić, N. ; Kuhn, S. ; Duhovnik, J.</creatorcontrib><description><![CDATA[This article presents an approach to solving a special Fredholm-type integral equation of the first kind with a particular kernel containing a modified Bessel function for applications in plasma physics. From the physical point of view, the problem was defined by Bissell and Johnson (B&J) [Phys. Fluids 30, 779 (1987)] as a task to find the potential profile and the ion velocity distribution function in a plane-parallel discharge with a Maxwellian ion source. The B&J model is a generalization of the well-known Tonks–Langmuir (T&L) [Phys. Rev. 34, 876 (1929)] discharge model characterized by a “cold” ion source. Unlike the T&L model, which can be readily solved analytically, attempts to solve the B&J model with a “warm” ion source have been done only numerically. However, the validity of numerical solutions up to date remains constrained to a rather limited range of a crucial independent parameter of the B&J integral equation, which mathematically is the width of a Gaussian distribution and physically represents the ion temperature. It was solved only for moderately warm ion sources. This paper presents the exact numerical solution of the B&J model, which is valid without any restriction regarding the above-mentioned parameter. It is shown that the ion temperature is very different from the temperature of the ion source. The new results with high-temperature ion sources are not only of particular importance for understanding and describing the plasma-sheath boundary in fusion plasmas, but are of considerable interest for discharge problems in general. The eigenvalue of the problem, found analytically by Harrison and Thompson [Proc. Phys. Soc. 74, 145 (1959)] for the particular case of a cold ion source, is here extended to arbitrary ion-source temperatures.]]></description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.3223556</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; BESSEL FUNCTIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DISTRIBUTION FUNCTIONS ; GAUSS FUNCTION ; INTEGRAL EQUATIONS ; ION TEMPERATURE ; IONS ; NUMERICAL SOLUTION ; PLASMA SHEATH ; PLASMA SIMULATION</subject><ispartof>Physics of plasmas, 2009-09, Vol.16 (9)</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-3d07f2d495cb055140fa40d3cc294781c4c21d58c2c5ce2e90417810268812003</citedby><cites>FETCH-LOGICAL-c327t-3d07f2d495cb055140fa40d3cc294781c4c21d58c2c5ce2e90417810268812003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.3223556$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21282132$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kos, L.</creatorcontrib><creatorcontrib>Jelić, N.</creatorcontrib><creatorcontrib>Kuhn, S.</creatorcontrib><creatorcontrib>Duhovnik, J.</creatorcontrib><title>Extension of the Bissell–Johnson plasma-sheath model for application to fusion-relevant and general plasmas</title><title>Physics of plasmas</title><description><![CDATA[This article presents an approach to solving a special Fredholm-type integral equation of the first kind with a particular kernel containing a modified Bessel function for applications in plasma physics. From the physical point of view, the problem was defined by Bissell and Johnson (B&J) [Phys. Fluids 30, 779 (1987)] as a task to find the potential profile and the ion velocity distribution function in a plane-parallel discharge with a Maxwellian ion source. The B&J model is a generalization of the well-known Tonks–Langmuir (T&L) [Phys. Rev. 34, 876 (1929)] discharge model characterized by a “cold” ion source. Unlike the T&L model, which can be readily solved analytically, attempts to solve the B&J model with a “warm” ion source have been done only numerically. However, the validity of numerical solutions up to date remains constrained to a rather limited range of a crucial independent parameter of the B&J integral equation, which mathematically is the width of a Gaussian distribution and physically represents the ion temperature. It was solved only for moderately warm ion sources. This paper presents the exact numerical solution of the B&J model, which is valid without any restriction regarding the above-mentioned parameter. It is shown that the ion temperature is very different from the temperature of the ion source. The new results with high-temperature ion sources are not only of particular importance for understanding and describing the plasma-sheath boundary in fusion plasmas, but are of considerable interest for discharge problems in general. The eigenvalue of the problem, found analytically by Harrison and Thompson [Proc. Phys. Soc. 74, 145 (1959)] for the particular case of a cold ion source, is here extended to arbitrary ion-source temperatures.]]></description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>BESSEL FUNCTIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DISTRIBUTION FUNCTIONS</subject><subject>GAUSS FUNCTION</subject><subject>INTEGRAL EQUATIONS</subject><subject>ION TEMPERATURE</subject><subject>IONS</subject><subject>NUMERICAL SOLUTION</subject><subject>PLASMA SHEATH</subject><subject>PLASMA SIMULATION</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEtKBDEQhoMoOI4uvEHAlUKPefZjqcP4YsCNgrsQ04ndkk6aJA668w7e0JPY7Qy6EFxVUfXVB_UDcIjRDKOcnuIZJYRynm-BCUZllRV5wbbHvkBZnrOHXbAX4zNCiOW8nIBu8Zq0i6130BuYGg3P2xi1tZ_vHze-cXFY9FbGTmax0TI1sPO1ttD4AGXf21bJNB4nD83LqMmCtnolXYLS1fBJOx2k3SjiPtgx0kZ9sKlTcH-xuJtfZcvby-v52TJTlBQpozUqDKlZxdUj4hwzZCRDNVWKVKwosWKK4JqXiiiuNNEVYngYI5KXJSYI0Sk4Wnt9TK2Iqk1aNco7p1USBJOSYEoG6nhNqeBjDNqIPrSdDG8CIzGmKbDYpDmwJ2t2lH2__AOvfPgFRV-b_-C_5i-3nYQu</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Kos, L.</creator><creator>Jelić, N.</creator><creator>Kuhn, S.</creator><creator>Duhovnik, J.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090901</creationdate><title>Extension of the Bissell–Johnson plasma-sheath model for application to fusion-relevant and general plasmas</title><author>Kos, L. ; Jelić, N. ; Kuhn, S. ; Duhovnik, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3d07f2d495cb055140fa40d3cc294781c4c21d58c2c5ce2e90417810268812003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>BESSEL FUNCTIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DISTRIBUTION FUNCTIONS</topic><topic>GAUSS FUNCTION</topic><topic>INTEGRAL EQUATIONS</topic><topic>ION TEMPERATURE</topic><topic>IONS</topic><topic>NUMERICAL SOLUTION</topic><topic>PLASMA SHEATH</topic><topic>PLASMA SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kos, L.</creatorcontrib><creatorcontrib>Jelić, N.</creatorcontrib><creatorcontrib>Kuhn, S.</creatorcontrib><creatorcontrib>Duhovnik, J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kos, L.</au><au>Jelić, N.</au><au>Kuhn, S.</au><au>Duhovnik, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of the Bissell–Johnson plasma-sheath model for application to fusion-relevant and general plasmas</atitle><jtitle>Physics of plasmas</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>16</volume><issue>9</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract><![CDATA[This article presents an approach to solving a special Fredholm-type integral equation of the first kind with a particular kernel containing a modified Bessel function for applications in plasma physics. From the physical point of view, the problem was defined by Bissell and Johnson (B&J) [Phys. Fluids 30, 779 (1987)] as a task to find the potential profile and the ion velocity distribution function in a plane-parallel discharge with a Maxwellian ion source. The B&J model is a generalization of the well-known Tonks–Langmuir (T&L) [Phys. Rev. 34, 876 (1929)] discharge model characterized by a “cold” ion source. Unlike the T&L model, which can be readily solved analytically, attempts to solve the B&J model with a “warm” ion source have been done only numerically. However, the validity of numerical solutions up to date remains constrained to a rather limited range of a crucial independent parameter of the B&J integral equation, which mathematically is the width of a Gaussian distribution and physically represents the ion temperature. It was solved only for moderately warm ion sources. This paper presents the exact numerical solution of the B&J model, which is valid without any restriction regarding the above-mentioned parameter. It is shown that the ion temperature is very different from the temperature of the ion source. The new results with high-temperature ion sources are not only of particular importance for understanding and describing the plasma-sheath boundary in fusion plasmas, but are of considerable interest for discharge problems in general. The eigenvalue of the problem, found analytically by Harrison and Thompson [Proc. Phys. Soc. 74, 145 (1959)] for the particular case of a cold ion source, is here extended to arbitrary ion-source temperatures.]]></abstract><cop>United States</cop><doi>10.1063/1.3223556</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2009-09, Vol.16 (9)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_1_3223556
source AIP Journals Complete; AIP Digital Archive
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
BESSEL FUNCTIONS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DISTRIBUTION FUNCTIONS
GAUSS FUNCTION
INTEGRAL EQUATIONS
ION TEMPERATURE
IONS
NUMERICAL SOLUTION
PLASMA SHEATH
PLASMA SIMULATION
title Extension of the Bissell–Johnson plasma-sheath model for application to fusion-relevant and general plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20the%20Bissell%E2%80%93Johnson%20plasma-sheath%20model%20for%20application%20to%20fusion-relevant%20and%20general%20plasmas&rft.jtitle=Physics%20of%20plasmas&rft.au=Kos,%20L.&rft.date=2009-09-01&rft.volume=16&rft.issue=9&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.3223556&rft_dat=%3Cscitation_cross%3Epop%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true