Thermoelectric properties of nanoporous Ge
We computed thermoelectric properties of nanoporous Ge (np-Ge) with aligned pores along the [001] direction through a combined classical molecular dynamics and first-principles electronic structure approach. A significant reduction in the lattice thermal conductivity of np-Ge leads to a 30-fold incr...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2009-07, Vol.95 (1), p.013106-013106-3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 013106-3 |
---|---|
container_issue | 1 |
container_start_page | 013106 |
container_title | Applied physics letters |
container_volume | 95 |
creator | Lee, Joo-Hyoung Grossman, Jeffrey C. |
description | We computed thermoelectric properties of nanoporous Ge (np-Ge) with aligned pores along the [001] direction through a combined classical molecular dynamics and first-principles electronic structure approach. A significant reduction in the lattice thermal conductivity of np-Ge leads to a 30-fold increase in the thermoelectric figure-of-merit
(
Z
T
)
compared to that of bulk. Detailed comparisons with the recently proposed np-Si show that although the maximum
Z
T
(
Z
T
max
)
of Ge is nine times larger than that of Si in the bulk phase,
Z
T
max
of np-Ge is twice as large as that of np-Si due to the similarity in lattice thermal conductivity of the two np systems. Moreover,
Z
T
max
is found to occur at a carrier concentration two orders of magnitude lower than that for with np-Si due to the dissimilarities in their electronic structure. |
doi_str_mv | 10.1063/1.3159813 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3159813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-d726b03c6fc42861f74e97aaed267b7bd68c198f857538e1623ac8dff881bbb53</originalsourceid><addsrcrecordid>eNp1z0FLAzEQhuEgCq7Vg_9grwpbMztNMnsRpGgVCl7qOSTZBFfazZLEg__eanvx4GkYePngYewa-By4xDuYI4iOAE9YBVypBgHolFWcc2xkJ-CcXeT8sX9Fi1ix2827T7vot96VNLh6SnHyqQw-1zHUoxnjFFP8zPXKX7KzYLbZXx3vjL09PW6Wz836dfWyfFg3DkmUplettBydDG7RkoSgFr5Txvi-lcoq20ty0FEgoQSSB9micdSHQATWWoEzdnPYdSnmnHzQUxp2Jn1p4PoHqUEfkfv2_tBmNxRThjj-H_-V6l8pfgPPgFk1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermoelectric properties of nanoporous Ge</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Lee, Joo-Hyoung ; Grossman, Jeffrey C.</creator><creatorcontrib>Lee, Joo-Hyoung ; Grossman, Jeffrey C.</creatorcontrib><description>We computed thermoelectric properties of nanoporous Ge (np-Ge) with aligned pores along the [001] direction through a combined classical molecular dynamics and first-principles electronic structure approach. A significant reduction in the lattice thermal conductivity of np-Ge leads to a 30-fold increase in the thermoelectric figure-of-merit
(
Z
T
)
compared to that of bulk. Detailed comparisons with the recently proposed np-Si show that although the maximum
Z
T
(
Z
T
max
)
of Ge is nine times larger than that of Si in the bulk phase,
Z
T
max
of np-Ge is twice as large as that of np-Si due to the similarity in lattice thermal conductivity of the two np systems. Moreover,
Z
T
max
is found to occur at a carrier concentration two orders of magnitude lower than that for with np-Si due to the dissimilarities in their electronic structure.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3159813</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2009-07, Vol.95 (1), p.013106-013106-3</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-d726b03c6fc42861f74e97aaed267b7bd68c198f857538e1623ac8dff881bbb53</citedby><cites>FETCH-LOGICAL-c385t-d726b03c6fc42861f74e97aaed267b7bd68c198f857538e1623ac8dff881bbb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3159813$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4511,27923,27924,76255,76261</link.rule.ids></links><search><creatorcontrib>Lee, Joo-Hyoung</creatorcontrib><creatorcontrib>Grossman, Jeffrey C.</creatorcontrib><title>Thermoelectric properties of nanoporous Ge</title><title>Applied physics letters</title><description>We computed thermoelectric properties of nanoporous Ge (np-Ge) with aligned pores along the [001] direction through a combined classical molecular dynamics and first-principles electronic structure approach. A significant reduction in the lattice thermal conductivity of np-Ge leads to a 30-fold increase in the thermoelectric figure-of-merit
(
Z
T
)
compared to that of bulk. Detailed comparisons with the recently proposed np-Si show that although the maximum
Z
T
(
Z
T
max
)
of Ge is nine times larger than that of Si in the bulk phase,
Z
T
max
of np-Ge is twice as large as that of np-Si due to the similarity in lattice thermal conductivity of the two np systems. Moreover,
Z
T
max
is found to occur at a carrier concentration two orders of magnitude lower than that for with np-Si due to the dissimilarities in their electronic structure.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1z0FLAzEQhuEgCq7Vg_9grwpbMztNMnsRpGgVCl7qOSTZBFfazZLEg__eanvx4GkYePngYewa-By4xDuYI4iOAE9YBVypBgHolFWcc2xkJ-CcXeT8sX9Fi1ix2827T7vot96VNLh6SnHyqQw-1zHUoxnjFFP8zPXKX7KzYLbZXx3vjL09PW6Wz836dfWyfFg3DkmUplettBydDG7RkoSgFr5Txvi-lcoq20ty0FEgoQSSB9micdSHQATWWoEzdnPYdSnmnHzQUxp2Jn1p4PoHqUEfkfv2_tBmNxRThjj-H_-V6l8pfgPPgFk1</recordid><startdate>20090706</startdate><enddate>20090706</enddate><creator>Lee, Joo-Hyoung</creator><creator>Grossman, Jeffrey C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090706</creationdate><title>Thermoelectric properties of nanoporous Ge</title><author>Lee, Joo-Hyoung ; Grossman, Jeffrey C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-d726b03c6fc42861f74e97aaed267b7bd68c198f857538e1623ac8dff881bbb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joo-Hyoung</creatorcontrib><creatorcontrib>Grossman, Jeffrey C.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Joo-Hyoung</au><au>Grossman, Jeffrey C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric properties of nanoporous Ge</atitle><jtitle>Applied physics letters</jtitle><date>2009-07-06</date><risdate>2009</risdate><volume>95</volume><issue>1</issue><spage>013106</spage><epage>013106-3</epage><pages>013106-013106-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We computed thermoelectric properties of nanoporous Ge (np-Ge) with aligned pores along the [001] direction through a combined classical molecular dynamics and first-principles electronic structure approach. A significant reduction in the lattice thermal conductivity of np-Ge leads to a 30-fold increase in the thermoelectric figure-of-merit
(
Z
T
)
compared to that of bulk. Detailed comparisons with the recently proposed np-Si show that although the maximum
Z
T
(
Z
T
max
)
of Ge is nine times larger than that of Si in the bulk phase,
Z
T
max
of np-Ge is twice as large as that of np-Si due to the similarity in lattice thermal conductivity of the two np systems. Moreover,
Z
T
max
is found to occur at a carrier concentration two orders of magnitude lower than that for with np-Si due to the dissimilarities in their electronic structure.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3159813</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2009-07, Vol.95 (1), p.013106-013106-3 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3159813 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
title | Thermoelectric properties of nanoporous Ge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20properties%20of%20nanoporous%20Ge&rft.jtitle=Applied%20physics%20letters&rft.au=Lee,%20Joo-Hyoung&rft.date=2009-07-06&rft.volume=95&rft.issue=1&rft.spage=013106&rft.epage=013106-3&rft.pages=013106-013106-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3159813&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |