Effect of rheological properties on drag reduction in turbulent boundary layer flow

Direct numerical simulation of a zero-pressure gradient drag-reducing turbulent boundary layer of viscoelastic fluids was systematically performed at the momentum-thickness Reynolds number Re θ 0 = 500 and Weissenberg number We = 25 using constitutive equation models such as the Oldroyd-B, the finit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2009-05, Vol.21 (5), p.055101-055101-12
Hauptverfasser: Tamano, Shinji, Itoh, Motoyuki, Hotta, Shintaro, Yokota, Kazuhiko, Morinishi, Yohei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 055101-12
container_issue 5
container_start_page 055101
container_title Physics of fluids (1994)
container_volume 21
creator Tamano, Shinji
Itoh, Motoyuki
Hotta, Shintaro
Yokota, Kazuhiko
Morinishi, Yohei
description Direct numerical simulation of a zero-pressure gradient drag-reducing turbulent boundary layer of viscoelastic fluids was systematically performed at the momentum-thickness Reynolds number Re θ 0 = 500 and Weissenberg number We = 25 using constitutive equation models such as the Oldroyd-B, the finitely extensible nonlinear elastic Peterlin model at the maximum chain extensibility parameters L 2 = 100 , 1000, and 10000, and the Giesekus model at the mobility factors α = 0.01 , 0.001, and 0.0001, where the ratios of solvent viscosity to zero shear rate solution viscosity, β , were 0.9, 0.99, and 0.999. For the case that the elongational viscosity for the steady elongational flow was identical, the streamwise variation in the drag reduction (DR) was thoroughly investigated, and then the effects of rheological properties such as the elongational and shear viscosities and the first and the second normal stress differences on DR were clarified. It is found that the streamwise profile of DR shifts downstream with the decrease in the first normal stress difference. The shear-thinning property and the first normal stress difference slightly affect the maximum DR, while the decrease in the magnitude of the second normal stress difference results in the decrease in the maximum DR.
doi_str_mv 10.1063/1.3137163
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3137163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_3137163Effect_of_rheologica</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-5befab54c4354de0aceb2bdf1c8d864485f672d74981ed0620f2cc93c0fc31273</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK4e_Ae5ePDQNV9N24sgy_oBCx7Uc0gnyRqpTUlSZP-9XSp68jQz8Mww74PQJSUrSiS_oStOeUUlP0ILSuqmqKSUx4e-IoWUnJ6is5Q-CCG8YXKBXjbOWcg4OBzfbejCzoPu8BDDYGP2NuHQYxP1DkdrRsh-Gn2P8xjbsbN9xm0Ye6PjHnd6byN2Xfg6RydOd8le_NQlervfvK4fi-3zw9P6bluAYCIXZWudbksBgpfCWKLBtqw1jkJtailEXTpZMVOJpqbWEMmIYwANB-KAU1bxJbqe70IMKUXr1BD95_SLokQdbCiqfmxM7NXMDjpNAV3UPfj0u8CoLDlj9cTdzlwCn_Uh7v9HZ3UqOPWnjn8DgDZ1Qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of rheological properties on drag reduction in turbulent boundary layer flow</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Tamano, Shinji ; Itoh, Motoyuki ; Hotta, Shintaro ; Yokota, Kazuhiko ; Morinishi, Yohei</creator><creatorcontrib>Tamano, Shinji ; Itoh, Motoyuki ; Hotta, Shintaro ; Yokota, Kazuhiko ; Morinishi, Yohei</creatorcontrib><description>Direct numerical simulation of a zero-pressure gradient drag-reducing turbulent boundary layer of viscoelastic fluids was systematically performed at the momentum-thickness Reynolds number Re θ 0 = 500 and Weissenberg number We = 25 using constitutive equation models such as the Oldroyd-B, the finitely extensible nonlinear elastic Peterlin model at the maximum chain extensibility parameters L 2 = 100 , 1000, and 10000, and the Giesekus model at the mobility factors α = 0.01 , 0.001, and 0.0001, where the ratios of solvent viscosity to zero shear rate solution viscosity, β , were 0.9, 0.99, and 0.999. For the case that the elongational viscosity for the steady elongational flow was identical, the streamwise variation in the drag reduction (DR) was thoroughly investigated, and then the effects of rheological properties such as the elongational and shear viscosities and the first and the second normal stress differences on DR were clarified. It is found that the streamwise profile of DR shifts downstream with the decrease in the first normal stress difference. The shear-thinning property and the first normal stress difference slightly affect the maximum DR, while the decrease in the magnitude of the second normal stress difference results in the decrease in the maximum DR.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3137163</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Boundary layer and shear turbulence ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Turbulence control ; Turbulent flows, convection, and heat transfer</subject><ispartof>Physics of fluids (1994), 2009-05, Vol.21 (5), p.055101-055101-12</ispartof><rights>2009 American Institute of Physics</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-5befab54c4354de0aceb2bdf1c8d864485f672d74981ed0620f2cc93c0fc31273</citedby><cites>FETCH-LOGICAL-c424t-5befab54c4354de0aceb2bdf1c8d864485f672d74981ed0620f2cc93c0fc31273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21653228$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamano, Shinji</creatorcontrib><creatorcontrib>Itoh, Motoyuki</creatorcontrib><creatorcontrib>Hotta, Shintaro</creatorcontrib><creatorcontrib>Yokota, Kazuhiko</creatorcontrib><creatorcontrib>Morinishi, Yohei</creatorcontrib><title>Effect of rheological properties on drag reduction in turbulent boundary layer flow</title><title>Physics of fluids (1994)</title><description>Direct numerical simulation of a zero-pressure gradient drag-reducing turbulent boundary layer of viscoelastic fluids was systematically performed at the momentum-thickness Reynolds number Re θ 0 = 500 and Weissenberg number We = 25 using constitutive equation models such as the Oldroyd-B, the finitely extensible nonlinear elastic Peterlin model at the maximum chain extensibility parameters L 2 = 100 , 1000, and 10000, and the Giesekus model at the mobility factors α = 0.01 , 0.001, and 0.0001, where the ratios of solvent viscosity to zero shear rate solution viscosity, β , were 0.9, 0.99, and 0.999. For the case that the elongational viscosity for the steady elongational flow was identical, the streamwise variation in the drag reduction (DR) was thoroughly investigated, and then the effects of rheological properties such as the elongational and shear viscosities and the first and the second normal stress differences on DR were clarified. It is found that the streamwise profile of DR shifts downstream with the decrease in the first normal stress difference. The shear-thinning property and the first normal stress difference slightly affect the maximum DR, while the decrease in the magnitude of the second normal stress difference results in the decrease in the maximum DR.</description><subject>Boundary layer and shear turbulence</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Turbulence control</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK4e_Ae5ePDQNV9N24sgy_oBCx7Uc0gnyRqpTUlSZP-9XSp68jQz8Mww74PQJSUrSiS_oStOeUUlP0ILSuqmqKSUx4e-IoWUnJ6is5Q-CCG8YXKBXjbOWcg4OBzfbejCzoPu8BDDYGP2NuHQYxP1DkdrRsh-Gn2P8xjbsbN9xm0Ye6PjHnd6byN2Xfg6RydOd8le_NQlervfvK4fi-3zw9P6bluAYCIXZWudbksBgpfCWKLBtqw1jkJtailEXTpZMVOJpqbWEMmIYwANB-KAU1bxJbqe70IMKUXr1BD95_SLokQdbCiqfmxM7NXMDjpNAV3UPfj0u8CoLDlj9cTdzlwCn_Uh7v9HZ3UqOPWnjn8DgDZ1Qg</recordid><startdate>20090513</startdate><enddate>20090513</enddate><creator>Tamano, Shinji</creator><creator>Itoh, Motoyuki</creator><creator>Hotta, Shintaro</creator><creator>Yokota, Kazuhiko</creator><creator>Morinishi, Yohei</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090513</creationdate><title>Effect of rheological properties on drag reduction in turbulent boundary layer flow</title><author>Tamano, Shinji ; Itoh, Motoyuki ; Hotta, Shintaro ; Yokota, Kazuhiko ; Morinishi, Yohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-5befab54c4354de0aceb2bdf1c8d864485f672d74981ed0620f2cc93c0fc31273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Boundary layer and shear turbulence</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Turbulence control</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamano, Shinji</creatorcontrib><creatorcontrib>Itoh, Motoyuki</creatorcontrib><creatorcontrib>Hotta, Shintaro</creatorcontrib><creatorcontrib>Yokota, Kazuhiko</creatorcontrib><creatorcontrib>Morinishi, Yohei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamano, Shinji</au><au>Itoh, Motoyuki</au><au>Hotta, Shintaro</au><au>Yokota, Kazuhiko</au><au>Morinishi, Yohei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of rheological properties on drag reduction in turbulent boundary layer flow</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2009-05-13</date><risdate>2009</risdate><volume>21</volume><issue>5</issue><spage>055101</spage><epage>055101-12</epage><pages>055101-055101-12</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Direct numerical simulation of a zero-pressure gradient drag-reducing turbulent boundary layer of viscoelastic fluids was systematically performed at the momentum-thickness Reynolds number Re θ 0 = 500 and Weissenberg number We = 25 using constitutive equation models such as the Oldroyd-B, the finitely extensible nonlinear elastic Peterlin model at the maximum chain extensibility parameters L 2 = 100 , 1000, and 10000, and the Giesekus model at the mobility factors α = 0.01 , 0.001, and 0.0001, where the ratios of solvent viscosity to zero shear rate solution viscosity, β , were 0.9, 0.99, and 0.999. For the case that the elongational viscosity for the steady elongational flow was identical, the streamwise variation in the drag reduction (DR) was thoroughly investigated, and then the effects of rheological properties such as the elongational and shear viscosities and the first and the second normal stress differences on DR were clarified. It is found that the streamwise profile of DR shifts downstream with the decrease in the first normal stress difference. The shear-thinning property and the first normal stress difference slightly affect the maximum DR, while the decrease in the magnitude of the second normal stress difference results in the decrease in the maximum DR.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3137163</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2009-05, Vol.21 (5), p.055101-055101-12
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_1_3137163
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Boundary layer and shear turbulence
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
Turbulence control
Turbulent flows, convection, and heat transfer
title Effect of rheological properties on drag reduction in turbulent boundary layer flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20rheological%20properties%20on%20drag%20reduction%20in%20turbulent%20boundary%20layer%20flow&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Tamano,%20Shinji&rft.date=2009-05-13&rft.volume=21&rft.issue=5&rft.spage=055101&rft.epage=055101-12&rft.pages=055101-055101-12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3137163&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_3137163Effect_of_rheologica%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true