Effect of rheological properties on drag reduction in turbulent boundary layer flow
Direct numerical simulation of a zero-pressure gradient drag-reducing turbulent boundary layer of viscoelastic fluids was systematically performed at the momentum-thickness Reynolds number Re θ 0 = 500 and Weissenberg number We = 25 using constitutive equation models such as the Oldroyd-B, the finit...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2009-05, Vol.21 (5), p.055101-055101-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 055101-12 |
---|---|
container_issue | 5 |
container_start_page | 055101 |
container_title | Physics of fluids (1994) |
container_volume | 21 |
creator | Tamano, Shinji Itoh, Motoyuki Hotta, Shintaro Yokota, Kazuhiko Morinishi, Yohei |
description | Direct numerical simulation of a zero-pressure gradient drag-reducing turbulent boundary layer of viscoelastic fluids was systematically performed at the momentum-thickness Reynolds number
Re
θ
0
=
500
and Weissenberg number
We
=
25
using constitutive equation models such as the Oldroyd-B, the finitely extensible nonlinear elastic Peterlin model at the maximum chain extensibility parameters
L
2
=
100
, 1000, and 10000, and the Giesekus model at the mobility factors
α
=
0.01
, 0.001, and 0.0001, where the ratios of solvent viscosity to zero shear rate solution viscosity,
β
, were 0.9, 0.99, and 0.999. For the case that the elongational viscosity for the steady elongational flow was identical, the streamwise variation in the drag reduction (DR) was thoroughly investigated, and then the effects of rheological properties such as the elongational and shear viscosities and the first and the second normal stress differences on DR were clarified. It is found that the streamwise profile of DR shifts downstream with the decrease in the first normal stress difference. The shear-thinning property and the first normal stress difference slightly affect the maximum DR, while the decrease in the magnitude of the second normal stress difference results in the decrease in the maximum DR. |
doi_str_mv | 10.1063/1.3137163 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3137163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_3137163Effect_of_rheologica</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-5befab54c4354de0aceb2bdf1c8d864485f672d74981ed0620f2cc93c0fc31273</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK4e_Ae5ePDQNV9N24sgy_oBCx7Uc0gnyRqpTUlSZP-9XSp68jQz8Mww74PQJSUrSiS_oStOeUUlP0ILSuqmqKSUx4e-IoWUnJ6is5Q-CCG8YXKBXjbOWcg4OBzfbejCzoPu8BDDYGP2NuHQYxP1DkdrRsh-Gn2P8xjbsbN9xm0Ye6PjHnd6byN2Xfg6RydOd8le_NQlervfvK4fi-3zw9P6bluAYCIXZWudbksBgpfCWKLBtqw1jkJtailEXTpZMVOJpqbWEMmIYwANB-KAU1bxJbqe70IMKUXr1BD95_SLokQdbCiqfmxM7NXMDjpNAV3UPfj0u8CoLDlj9cTdzlwCn_Uh7v9HZ3UqOPWnjn8DgDZ1Qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of rheological properties on drag reduction in turbulent boundary layer flow</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Tamano, Shinji ; Itoh, Motoyuki ; Hotta, Shintaro ; Yokota, Kazuhiko ; Morinishi, Yohei</creator><creatorcontrib>Tamano, Shinji ; Itoh, Motoyuki ; Hotta, Shintaro ; Yokota, Kazuhiko ; Morinishi, Yohei</creatorcontrib><description>Direct numerical simulation of a zero-pressure gradient drag-reducing turbulent boundary layer of viscoelastic fluids was systematically performed at the momentum-thickness Reynolds number
Re
θ
0
=
500
and Weissenberg number
We
=
25
using constitutive equation models such as the Oldroyd-B, the finitely extensible nonlinear elastic Peterlin model at the maximum chain extensibility parameters
L
2
=
100
, 1000, and 10000, and the Giesekus model at the mobility factors
α
=
0.01
, 0.001, and 0.0001, where the ratios of solvent viscosity to zero shear rate solution viscosity,
β
, were 0.9, 0.99, and 0.999. For the case that the elongational viscosity for the steady elongational flow was identical, the streamwise variation in the drag reduction (DR) was thoroughly investigated, and then the effects of rheological properties such as the elongational and shear viscosities and the first and the second normal stress differences on DR were clarified. It is found that the streamwise profile of DR shifts downstream with the decrease in the first normal stress difference. The shear-thinning property and the first normal stress difference slightly affect the maximum DR, while the decrease in the magnitude of the second normal stress difference results in the decrease in the maximum DR.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3137163</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Boundary layer and shear turbulence ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Turbulence control ; Turbulent flows, convection, and heat transfer</subject><ispartof>Physics of fluids (1994), 2009-05, Vol.21 (5), p.055101-055101-12</ispartof><rights>2009 American Institute of Physics</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-5befab54c4354de0aceb2bdf1c8d864485f672d74981ed0620f2cc93c0fc31273</citedby><cites>FETCH-LOGICAL-c424t-5befab54c4354de0aceb2bdf1c8d864485f672d74981ed0620f2cc93c0fc31273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21653228$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamano, Shinji</creatorcontrib><creatorcontrib>Itoh, Motoyuki</creatorcontrib><creatorcontrib>Hotta, Shintaro</creatorcontrib><creatorcontrib>Yokota, Kazuhiko</creatorcontrib><creatorcontrib>Morinishi, Yohei</creatorcontrib><title>Effect of rheological properties on drag reduction in turbulent boundary layer flow</title><title>Physics of fluids (1994)</title><description>Direct numerical simulation of a zero-pressure gradient drag-reducing turbulent boundary layer of viscoelastic fluids was systematically performed at the momentum-thickness Reynolds number
Re
θ
0
=
500
and Weissenberg number
We
=
25
using constitutive equation models such as the Oldroyd-B, the finitely extensible nonlinear elastic Peterlin model at the maximum chain extensibility parameters
L
2
=
100
, 1000, and 10000, and the Giesekus model at the mobility factors
α
=
0.01
, 0.001, and 0.0001, where the ratios of solvent viscosity to zero shear rate solution viscosity,
β
, were 0.9, 0.99, and 0.999. For the case that the elongational viscosity for the steady elongational flow was identical, the streamwise variation in the drag reduction (DR) was thoroughly investigated, and then the effects of rheological properties such as the elongational and shear viscosities and the first and the second normal stress differences on DR were clarified. It is found that the streamwise profile of DR shifts downstream with the decrease in the first normal stress difference. The shear-thinning property and the first normal stress difference slightly affect the maximum DR, while the decrease in the magnitude of the second normal stress difference results in the decrease in the maximum DR.</description><subject>Boundary layer and shear turbulence</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Turbulence control</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK4e_Ae5ePDQNV9N24sgy_oBCx7Uc0gnyRqpTUlSZP-9XSp68jQz8Mww74PQJSUrSiS_oStOeUUlP0ILSuqmqKSUx4e-IoWUnJ6is5Q-CCG8YXKBXjbOWcg4OBzfbejCzoPu8BDDYGP2NuHQYxP1DkdrRsh-Gn2P8xjbsbN9xm0Ye6PjHnd6byN2Xfg6RydOd8le_NQlervfvK4fi-3zw9P6bluAYCIXZWudbksBgpfCWKLBtqw1jkJtailEXTpZMVOJpqbWEMmIYwANB-KAU1bxJbqe70IMKUXr1BD95_SLokQdbCiqfmxM7NXMDjpNAV3UPfj0u8CoLDlj9cTdzlwCn_Uh7v9HZ3UqOPWnjn8DgDZ1Qg</recordid><startdate>20090513</startdate><enddate>20090513</enddate><creator>Tamano, Shinji</creator><creator>Itoh, Motoyuki</creator><creator>Hotta, Shintaro</creator><creator>Yokota, Kazuhiko</creator><creator>Morinishi, Yohei</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090513</creationdate><title>Effect of rheological properties on drag reduction in turbulent boundary layer flow</title><author>Tamano, Shinji ; Itoh, Motoyuki ; Hotta, Shintaro ; Yokota, Kazuhiko ; Morinishi, Yohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-5befab54c4354de0aceb2bdf1c8d864485f672d74981ed0620f2cc93c0fc31273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Boundary layer and shear turbulence</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Turbulence control</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamano, Shinji</creatorcontrib><creatorcontrib>Itoh, Motoyuki</creatorcontrib><creatorcontrib>Hotta, Shintaro</creatorcontrib><creatorcontrib>Yokota, Kazuhiko</creatorcontrib><creatorcontrib>Morinishi, Yohei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamano, Shinji</au><au>Itoh, Motoyuki</au><au>Hotta, Shintaro</au><au>Yokota, Kazuhiko</au><au>Morinishi, Yohei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of rheological properties on drag reduction in turbulent boundary layer flow</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2009-05-13</date><risdate>2009</risdate><volume>21</volume><issue>5</issue><spage>055101</spage><epage>055101-12</epage><pages>055101-055101-12</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Direct numerical simulation of a zero-pressure gradient drag-reducing turbulent boundary layer of viscoelastic fluids was systematically performed at the momentum-thickness Reynolds number
Re
θ
0
=
500
and Weissenberg number
We
=
25
using constitutive equation models such as the Oldroyd-B, the finitely extensible nonlinear elastic Peterlin model at the maximum chain extensibility parameters
L
2
=
100
, 1000, and 10000, and the Giesekus model at the mobility factors
α
=
0.01
, 0.001, and 0.0001, where the ratios of solvent viscosity to zero shear rate solution viscosity,
β
, were 0.9, 0.99, and 0.999. For the case that the elongational viscosity for the steady elongational flow was identical, the streamwise variation in the drag reduction (DR) was thoroughly investigated, and then the effects of rheological properties such as the elongational and shear viscosities and the first and the second normal stress differences on DR were clarified. It is found that the streamwise profile of DR shifts downstream with the decrease in the first normal stress difference. The shear-thinning property and the first normal stress difference slightly affect the maximum DR, while the decrease in the magnitude of the second normal stress difference results in the decrease in the maximum DR.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3137163</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2009-05, Vol.21 (5), p.055101-055101-12 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3137163 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Boundary layer and shear turbulence Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics Turbulence control Turbulent flows, convection, and heat transfer |
title | Effect of rheological properties on drag reduction in turbulent boundary layer flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20rheological%20properties%20on%20drag%20reduction%20in%20turbulent%20boundary%20layer%20flow&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Tamano,%20Shinji&rft.date=2009-05-13&rft.volume=21&rft.issue=5&rft.spage=055101&rft.epage=055101-12&rft.pages=055101-055101-12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3137163&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_3137163Effect_of_rheologica%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |