Neural network characterization of plasma-induced charging damage on thick oxide-based metal-oxide-semiconductor device

Charging damage can critically degrade oxide reliability. Antenna-structured metal-oxide-semiconductor field-effect transistors were fabricated to examine the effect of process parameters on charging damage. Charging damage to threshold voltage ( V th ) was investigated experimentally as well as by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2009-06, Vol.105 (11), p.113302-113302-5
Hauptverfasser: Kim, Byungwhan, Kwon, Sang Hee, Kwon, Kwang Ho, Kang, Sangwoo, Baek, Kyu-Ha, Lee, Jin Ho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113302-5
container_issue 11
container_start_page 113302
container_title Journal of applied physics
container_volume 105
creator Kim, Byungwhan
Kwon, Sang Hee
Kwon, Kwang Ho
Kang, Sangwoo
Baek, Kyu-Ha
Lee, Jin Ho
description Charging damage can critically degrade oxide reliability. Antenna-structured metal-oxide-semiconductor field-effect transistors were fabricated to examine the effect of process parameters on charging damage. Charging damage to threshold voltage ( V th ) was investigated experimentally as well as by constructing a neural network model. For a systematic modeling, charging damage process was characterized by means of a face-centered Box-Wilson experiment. The prediction performance of neural network model was optimized by applying genetic algorithm. A radio frequency source power was identified as the most influential factor. This could be more ascertained by the insignificant impact of bias power or gas ratio. Using the model, implications of plasma nonuniformity and polymer deposition were examined under various plasma conditions.
doi_str_mv 10.1063/1.3122602
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3122602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-5ecc41f1d81186fca120cbda87ac4e3519fa17d307038cca95181cea4bc924163</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiFQ8AduKRw86314GyQU8ZIiaKBeTcbexGQfke0Q4OvZPFqqka7OjO4cxq5BTkDm6hYmCpIkl8kJG4HUpSiyTJ6ykZQJCF0W5Tm7COFTSgCtyhHbvtqNx4Z3Nm57v-K0RI8UrXe_GF3f8b7m6wZDi8J1ZkPW7JGF6xbcYIsLywcoLh2teP_tjBVzDAPU2oiNOCTBto763XbsPTf2y5G9ZGc1NsFeHeeYfTw-vE-fxezt6WV6PxOU6DSKzBKlUIPRQ9-8JoRE0tygLpBSqzIoa4TCKFlIpYmwzEADWUznVCYp5GrMbg53yfcheFtXa-9a9D8VyGpnrILqaGxg7w5sIBf33_8PH7RVR23VXpv6A3ScdiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neural network characterization of plasma-induced charging damage on thick oxide-based metal-oxide-semiconductor device</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Kim, Byungwhan ; Kwon, Sang Hee ; Kwon, Kwang Ho ; Kang, Sangwoo ; Baek, Kyu-Ha ; Lee, Jin Ho</creator><creatorcontrib>Kim, Byungwhan ; Kwon, Sang Hee ; Kwon, Kwang Ho ; Kang, Sangwoo ; Baek, Kyu-Ha ; Lee, Jin Ho</creatorcontrib><description>Charging damage can critically degrade oxide reliability. Antenna-structured metal-oxide-semiconductor field-effect transistors were fabricated to examine the effect of process parameters on charging damage. Charging damage to threshold voltage ( V th ) was investigated experimentally as well as by constructing a neural network model. For a systematic modeling, charging damage process was characterized by means of a face-centered Box-Wilson experiment. The prediction performance of neural network model was optimized by applying genetic algorithm. A radio frequency source power was identified as the most influential factor. This could be more ascertained by the insignificant impact of bias power or gas ratio. Using the model, implications of plasma nonuniformity and polymer deposition were examined under various plasma conditions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3122602</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2009-06, Vol.105 (11), p.113302-113302-5</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-5ecc41f1d81186fca120cbda87ac4e3519fa17d307038cca95181cea4bc924163</citedby><cites>FETCH-LOGICAL-c284t-5ecc41f1d81186fca120cbda87ac4e3519fa17d307038cca95181cea4bc924163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3122602$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Kim, Byungwhan</creatorcontrib><creatorcontrib>Kwon, Sang Hee</creatorcontrib><creatorcontrib>Kwon, Kwang Ho</creatorcontrib><creatorcontrib>Kang, Sangwoo</creatorcontrib><creatorcontrib>Baek, Kyu-Ha</creatorcontrib><creatorcontrib>Lee, Jin Ho</creatorcontrib><title>Neural network characterization of plasma-induced charging damage on thick oxide-based metal-oxide-semiconductor device</title><title>Journal of applied physics</title><description>Charging damage can critically degrade oxide reliability. Antenna-structured metal-oxide-semiconductor field-effect transistors were fabricated to examine the effect of process parameters on charging damage. Charging damage to threshold voltage ( V th ) was investigated experimentally as well as by constructing a neural network model. For a systematic modeling, charging damage process was characterized by means of a face-centered Box-Wilson experiment. The prediction performance of neural network model was optimized by applying genetic algorithm. A radio frequency source power was identified as the most influential factor. This could be more ascertained by the insignificant impact of bias power or gas ratio. Using the model, implications of plasma nonuniformity and polymer deposition were examined under various plasma conditions.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiFQ8AduKRw86314GyQU8ZIiaKBeTcbexGQfke0Q4OvZPFqqka7OjO4cxq5BTkDm6hYmCpIkl8kJG4HUpSiyTJ6ykZQJCF0W5Tm7COFTSgCtyhHbvtqNx4Z3Nm57v-K0RI8UrXe_GF3f8b7m6wZDi8J1ZkPW7JGF6xbcYIsLywcoLh2teP_tjBVzDAPU2oiNOCTBto763XbsPTf2y5G9ZGc1NsFeHeeYfTw-vE-fxezt6WV6PxOU6DSKzBKlUIPRQ9-8JoRE0tygLpBSqzIoa4TCKFlIpYmwzEADWUznVCYp5GrMbg53yfcheFtXa-9a9D8VyGpnrILqaGxg7w5sIBf33_8PH7RVR23VXpv6A3ScdiE</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Kim, Byungwhan</creator><creator>Kwon, Sang Hee</creator><creator>Kwon, Kwang Ho</creator><creator>Kang, Sangwoo</creator><creator>Baek, Kyu-Ha</creator><creator>Lee, Jin Ho</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090601</creationdate><title>Neural network characterization of plasma-induced charging damage on thick oxide-based metal-oxide-semiconductor device</title><author>Kim, Byungwhan ; Kwon, Sang Hee ; Kwon, Kwang Ho ; Kang, Sangwoo ; Baek, Kyu-Ha ; Lee, Jin Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-5ecc41f1d81186fca120cbda87ac4e3519fa17d307038cca95181cea4bc924163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Byungwhan</creatorcontrib><creatorcontrib>Kwon, Sang Hee</creatorcontrib><creatorcontrib>Kwon, Kwang Ho</creatorcontrib><creatorcontrib>Kang, Sangwoo</creatorcontrib><creatorcontrib>Baek, Kyu-Ha</creatorcontrib><creatorcontrib>Lee, Jin Ho</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Byungwhan</au><au>Kwon, Sang Hee</au><au>Kwon, Kwang Ho</au><au>Kang, Sangwoo</au><au>Baek, Kyu-Ha</au><au>Lee, Jin Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network characterization of plasma-induced charging damage on thick oxide-based metal-oxide-semiconductor device</atitle><jtitle>Journal of applied physics</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>105</volume><issue>11</issue><spage>113302</spage><epage>113302-5</epage><pages>113302-113302-5</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Charging damage can critically degrade oxide reliability. Antenna-structured metal-oxide-semiconductor field-effect transistors were fabricated to examine the effect of process parameters on charging damage. Charging damage to threshold voltage ( V th ) was investigated experimentally as well as by constructing a neural network model. For a systematic modeling, charging damage process was characterized by means of a face-centered Box-Wilson experiment. The prediction performance of neural network model was optimized by applying genetic algorithm. A radio frequency source power was identified as the most influential factor. This could be more ascertained by the insignificant impact of bias power or gas ratio. Using the model, implications of plasma nonuniformity and polymer deposition were examined under various plasma conditions.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3122602</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2009-06, Vol.105 (11), p.113302-113302-5
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_3122602
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Neural network characterization of plasma-induced charging damage on thick oxide-based metal-oxide-semiconductor device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20characterization%20of%20plasma-induced%20charging%20damage%20on%20thick%20oxide-based%20metal-oxide-semiconductor%20device&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kim,%20Byungwhan&rft.date=2009-06-01&rft.volume=105&rft.issue=11&rft.spage=113302&rft.epage=113302-5&rft.pages=113302-113302-5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3122602&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true