Neural network characterization of plasma-induced charging damage on thick oxide-based metal-oxide-semiconductor device
Charging damage can critically degrade oxide reliability. Antenna-structured metal-oxide-semiconductor field-effect transistors were fabricated to examine the effect of process parameters on charging damage. Charging damage to threshold voltage ( V th ) was investigated experimentally as well as by...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2009-06, Vol.105 (11), p.113302-113302-5 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113302-5 |
---|---|
container_issue | 11 |
container_start_page | 113302 |
container_title | Journal of applied physics |
container_volume | 105 |
creator | Kim, Byungwhan Kwon, Sang Hee Kwon, Kwang Ho Kang, Sangwoo Baek, Kyu-Ha Lee, Jin Ho |
description | Charging damage can critically degrade oxide reliability. Antenna-structured metal-oxide-semiconductor field-effect transistors were fabricated to examine the effect of process parameters on charging damage. Charging damage to threshold voltage
(
V
th
)
was investigated experimentally as well as by constructing a neural network model. For a systematic modeling, charging damage process was characterized by means of a face-centered Box-Wilson experiment. The prediction performance of neural network model was optimized by applying genetic algorithm. A radio frequency source power was identified as the most influential factor. This could be more ascertained by the insignificant impact of bias power or gas ratio. Using the model, implications of plasma nonuniformity and polymer deposition were examined under various plasma conditions. |
doi_str_mv | 10.1063/1.3122602 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3122602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-5ecc41f1d81186fca120cbda87ac4e3519fa17d307038cca95181cea4bc924163</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiFQ8AduKRw86314GyQU8ZIiaKBeTcbexGQfke0Q4OvZPFqqka7OjO4cxq5BTkDm6hYmCpIkl8kJG4HUpSiyTJ6ykZQJCF0W5Tm7COFTSgCtyhHbvtqNx4Z3Nm57v-K0RI8UrXe_GF3f8b7m6wZDi8J1ZkPW7JGF6xbcYIsLywcoLh2teP_tjBVzDAPU2oiNOCTBto763XbsPTf2y5G9ZGc1NsFeHeeYfTw-vE-fxezt6WV6PxOU6DSKzBKlUIPRQ9-8JoRE0tygLpBSqzIoa4TCKFlIpYmwzEADWUznVCYp5GrMbg53yfcheFtXa-9a9D8VyGpnrILqaGxg7w5sIBf33_8PH7RVR23VXpv6A3ScdiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neural network characterization of plasma-induced charging damage on thick oxide-based metal-oxide-semiconductor device</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Kim, Byungwhan ; Kwon, Sang Hee ; Kwon, Kwang Ho ; Kang, Sangwoo ; Baek, Kyu-Ha ; Lee, Jin Ho</creator><creatorcontrib>Kim, Byungwhan ; Kwon, Sang Hee ; Kwon, Kwang Ho ; Kang, Sangwoo ; Baek, Kyu-Ha ; Lee, Jin Ho</creatorcontrib><description>Charging damage can critically degrade oxide reliability. Antenna-structured metal-oxide-semiconductor field-effect transistors were fabricated to examine the effect of process parameters on charging damage. Charging damage to threshold voltage
(
V
th
)
was investigated experimentally as well as by constructing a neural network model. For a systematic modeling, charging damage process was characterized by means of a face-centered Box-Wilson experiment. The prediction performance of neural network model was optimized by applying genetic algorithm. A radio frequency source power was identified as the most influential factor. This could be more ascertained by the insignificant impact of bias power or gas ratio. Using the model, implications of plasma nonuniformity and polymer deposition were examined under various plasma conditions.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3122602</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2009-06, Vol.105 (11), p.113302-113302-5</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-5ecc41f1d81186fca120cbda87ac4e3519fa17d307038cca95181cea4bc924163</citedby><cites>FETCH-LOGICAL-c284t-5ecc41f1d81186fca120cbda87ac4e3519fa17d307038cca95181cea4bc924163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3122602$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1559,4512,27924,27925,76384,76390</link.rule.ids></links><search><creatorcontrib>Kim, Byungwhan</creatorcontrib><creatorcontrib>Kwon, Sang Hee</creatorcontrib><creatorcontrib>Kwon, Kwang Ho</creatorcontrib><creatorcontrib>Kang, Sangwoo</creatorcontrib><creatorcontrib>Baek, Kyu-Ha</creatorcontrib><creatorcontrib>Lee, Jin Ho</creatorcontrib><title>Neural network characterization of plasma-induced charging damage on thick oxide-based metal-oxide-semiconductor device</title><title>Journal of applied physics</title><description>Charging damage can critically degrade oxide reliability. Antenna-structured metal-oxide-semiconductor field-effect transistors were fabricated to examine the effect of process parameters on charging damage. Charging damage to threshold voltage
(
V
th
)
was investigated experimentally as well as by constructing a neural network model. For a systematic modeling, charging damage process was characterized by means of a face-centered Box-Wilson experiment. The prediction performance of neural network model was optimized by applying genetic algorithm. A radio frequency source power was identified as the most influential factor. This could be more ascertained by the insignificant impact of bias power or gas ratio. Using the model, implications of plasma nonuniformity and polymer deposition were examined under various plasma conditions.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiFQ8AduKRw86314GyQU8ZIiaKBeTcbexGQfke0Q4OvZPFqqka7OjO4cxq5BTkDm6hYmCpIkl8kJG4HUpSiyTJ6ykZQJCF0W5Tm7COFTSgCtyhHbvtqNx4Z3Nm57v-K0RI8UrXe_GF3f8b7m6wZDi8J1ZkPW7JGF6xbcYIsLywcoLh2teP_tjBVzDAPU2oiNOCTBto763XbsPTf2y5G9ZGc1NsFeHeeYfTw-vE-fxezt6WV6PxOU6DSKzBKlUIPRQ9-8JoRE0tygLpBSqzIoa4TCKFlIpYmwzEADWUznVCYp5GrMbg53yfcheFtXa-9a9D8VyGpnrILqaGxg7w5sIBf33_8PH7RVR23VXpv6A3ScdiE</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Kim, Byungwhan</creator><creator>Kwon, Sang Hee</creator><creator>Kwon, Kwang Ho</creator><creator>Kang, Sangwoo</creator><creator>Baek, Kyu-Ha</creator><creator>Lee, Jin Ho</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090601</creationdate><title>Neural network characterization of plasma-induced charging damage on thick oxide-based metal-oxide-semiconductor device</title><author>Kim, Byungwhan ; Kwon, Sang Hee ; Kwon, Kwang Ho ; Kang, Sangwoo ; Baek, Kyu-Ha ; Lee, Jin Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-5ecc41f1d81186fca120cbda87ac4e3519fa17d307038cca95181cea4bc924163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Byungwhan</creatorcontrib><creatorcontrib>Kwon, Sang Hee</creatorcontrib><creatorcontrib>Kwon, Kwang Ho</creatorcontrib><creatorcontrib>Kang, Sangwoo</creatorcontrib><creatorcontrib>Baek, Kyu-Ha</creatorcontrib><creatorcontrib>Lee, Jin Ho</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Byungwhan</au><au>Kwon, Sang Hee</au><au>Kwon, Kwang Ho</au><au>Kang, Sangwoo</au><au>Baek, Kyu-Ha</au><au>Lee, Jin Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network characterization of plasma-induced charging damage on thick oxide-based metal-oxide-semiconductor device</atitle><jtitle>Journal of applied physics</jtitle><date>2009-06-01</date><risdate>2009</risdate><volume>105</volume><issue>11</issue><spage>113302</spage><epage>113302-5</epage><pages>113302-113302-5</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Charging damage can critically degrade oxide reliability. Antenna-structured metal-oxide-semiconductor field-effect transistors were fabricated to examine the effect of process parameters on charging damage. Charging damage to threshold voltage
(
V
th
)
was investigated experimentally as well as by constructing a neural network model. For a systematic modeling, charging damage process was characterized by means of a face-centered Box-Wilson experiment. The prediction performance of neural network model was optimized by applying genetic algorithm. A radio frequency source power was identified as the most influential factor. This could be more ascertained by the insignificant impact of bias power or gas ratio. Using the model, implications of plasma nonuniformity and polymer deposition were examined under various plasma conditions.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3122602</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2009-06, Vol.105 (11), p.113302-113302-5 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3122602 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
title | Neural network characterization of plasma-induced charging damage on thick oxide-based metal-oxide-semiconductor device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20characterization%20of%20plasma-induced%20charging%20damage%20on%20thick%20oxide-based%20metal-oxide-semiconductor%20device&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Kim,%20Byungwhan&rft.date=2009-06-01&rft.volume=105&rft.issue=11&rft.spage=113302&rft.epage=113302-5&rft.pages=113302-113302-5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3122602&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |