An investigation of silicon carbide-water nanofluid for heat transfer applications
Thermal conductivity and mechanical effects of silicon carbide nanoparticles uniformly dispersed in water were investigated. Mean size of SiC particles was 170 nm with a polydispersity of ∼ 30 % as determined from small-angle x-ray scattering and dynamic light scattering techniques. Room temperature...
Gespeichert in:
Veröffentlicht in: | J Appl. Physics 2009-03, Vol.105 (6), p.064306-064306-6 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 064306-6 |
---|---|
container_issue | 6 |
container_start_page | 064306 |
container_title | J Appl. Physics |
container_volume | 105 |
creator | Singh, D. Timofeeva, E. Yu, W. Routbort, J. France, D. Smith, D. Lopez-Cepero, J. M. |
description | Thermal conductivity and mechanical effects of silicon carbide nanoparticles uniformly dispersed in water were investigated. Mean size of SiC particles was 170 nm with a polydispersity of
∼
30
%
as determined from small-angle x-ray scattering and dynamic light scattering techniques. Room temperature viscosity of the nanofluids ranged from 2 to 3 cP for nominal nanoparticle loadings
4
-
7
vol
%
. On a normalized basis with water, viscosity of the nanofluids did not significantly change with the test temperature up to
85
°
C
. Optical microscopy of diluted nanofluid showed no agglomeration of the nanoparticles. Thermal conductivity of the fluid was measured as a function of the nominal nanoparticle loading ranging from 1 to
7
vol
%
. Enhancement in thermal conductivity was approximately 28% over that of water at
7
vol
%
particle loadings under ambient conditions. Enhancements in thermal conductivities for the nanofluids with varying nanoparticle loadings were maintained at test temperatures up to
70
°
C
. Results of thermal conductivity have been rationalized based on the existing theories of heat transfer in fluids. Implications of using this nanofluid for engineering cooling applications are discussed. |
doi_str_mv | 10.1063/1.3082094 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3082094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-11f76594a342363b0c3917735c7fe70ee476ac533b2a3402cdb058848e597d5c3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsHv0Hw5mHrZLPZJAcPpfgPCoLoOWSziY3UpCRR8dubtl48eJqB-c3jvYfQOYEZgZ5ekRkF0YLsDtCEgJANZwwO0QSgJY2QXB6jk5zfAAgRVE7Q0zxgHz5tLv5VFx8Djg5nv_amrkanwY-2-dLFJhx0iG794UfsYsIrqwsuSYfs6k1vNvVlJ5BP0ZHT62zPfucUvdzePC_um-Xj3cNivmxMR0hpCHG8Z7LTtGtpTwcwVBLOKTPcWQ7WdrzXhlE6tBWB1owDMCE6YZnkIzN0ii72urGaV9n4Ys2q2g7WFEUAJKVQocs9ZFLMOVmnNsm_6_RdCbVtTBH121hlr_fsVmuX5X94HtSf2lR09Acs5XI7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An investigation of silicon carbide-water nanofluid for heat transfer applications</title><source>AIP Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Singh, D. ; Timofeeva, E. ; Yu, W. ; Routbort, J. ; France, D. ; Smith, D. ; Lopez-Cepero, J. M.</creator><creatorcontrib>Singh, D. ; Timofeeva, E. ; Yu, W. ; Routbort, J. ; France, D. ; Smith, D. ; Lopez-Cepero, J. M. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Thermal conductivity and mechanical effects of silicon carbide nanoparticles uniformly dispersed in water were investigated. Mean size of SiC particles was 170 nm with a polydispersity of
∼
30
%
as determined from small-angle x-ray scattering and dynamic light scattering techniques. Room temperature viscosity of the nanofluids ranged from 2 to 3 cP for nominal nanoparticle loadings
4
-
7
vol
%
. On a normalized basis with water, viscosity of the nanofluids did not significantly change with the test temperature up to
85
°
C
. Optical microscopy of diluted nanofluid showed no agglomeration of the nanoparticles. Thermal conductivity of the fluid was measured as a function of the nominal nanoparticle loading ranging from 1 to
7
vol
%
. Enhancement in thermal conductivity was approximately 28% over that of water at
7
vol
%
particle loadings under ambient conditions. Enhancements in thermal conductivities for the nanofluids with varying nanoparticle loadings were maintained at test temperatures up to
70
°
C
. Results of thermal conductivity have been rationalized based on the existing theories of heat transfer in fluids. Implications of using this nanofluid for engineering cooling applications are discussed.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3082094</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>AGGLOMERATION ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; HEAT TRANSFER ; LIGHT SCATTERING ; MECHANICAL PROPERTIES ; OPTICAL MICROSCOPY ; SCATTERING ; SILICON ; SILICON CARBIDES ; THERMAL CONDUCTIVITY ; VISCOSITY ; WATER</subject><ispartof>J Appl. Physics, 2009-03, Vol.105 (6), p.064306-064306-6</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-11f76594a342363b0c3917735c7fe70ee476ac533b2a3402cdb058848e597d5c3</citedby><cites>FETCH-LOGICAL-c411t-11f76594a342363b0c3917735c7fe70ee476ac533b2a3402cdb058848e597d5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3082094$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,882,1554,4498,27905,27906,76133,76139</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1009330$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>Timofeeva, E.</creatorcontrib><creatorcontrib>Yu, W.</creatorcontrib><creatorcontrib>Routbort, J.</creatorcontrib><creatorcontrib>France, D.</creatorcontrib><creatorcontrib>Smith, D.</creatorcontrib><creatorcontrib>Lopez-Cepero, J. M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>An investigation of silicon carbide-water nanofluid for heat transfer applications</title><title>J Appl. Physics</title><description>Thermal conductivity and mechanical effects of silicon carbide nanoparticles uniformly dispersed in water were investigated. Mean size of SiC particles was 170 nm with a polydispersity of
∼
30
%
as determined from small-angle x-ray scattering and dynamic light scattering techniques. Room temperature viscosity of the nanofluids ranged from 2 to 3 cP for nominal nanoparticle loadings
4
-
7
vol
%
. On a normalized basis with water, viscosity of the nanofluids did not significantly change with the test temperature up to
85
°
C
. Optical microscopy of diluted nanofluid showed no agglomeration of the nanoparticles. Thermal conductivity of the fluid was measured as a function of the nominal nanoparticle loading ranging from 1 to
7
vol
%
. Enhancement in thermal conductivity was approximately 28% over that of water at
7
vol
%
particle loadings under ambient conditions. Enhancements in thermal conductivities for the nanofluids with varying nanoparticle loadings were maintained at test temperatures up to
70
°
C
. Results of thermal conductivity have been rationalized based on the existing theories of heat transfer in fluids. Implications of using this nanofluid for engineering cooling applications are discussed.</description><subject>AGGLOMERATION</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>HEAT TRANSFER</subject><subject>LIGHT SCATTERING</subject><subject>MECHANICAL PROPERTIES</subject><subject>OPTICAL MICROSCOPY</subject><subject>SCATTERING</subject><subject>SILICON</subject><subject>SILICON CARBIDES</subject><subject>THERMAL CONDUCTIVITY</subject><subject>VISCOSITY</subject><subject>WATER</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsHv0Hw5mHrZLPZJAcPpfgPCoLoOWSziY3UpCRR8dubtl48eJqB-c3jvYfQOYEZgZ5ekRkF0YLsDtCEgJANZwwO0QSgJY2QXB6jk5zfAAgRVE7Q0zxgHz5tLv5VFx8Djg5nv_amrkanwY-2-dLFJhx0iG794UfsYsIrqwsuSYfs6k1vNvVlJ5BP0ZHT62zPfucUvdzePC_um-Xj3cNivmxMR0hpCHG8Z7LTtGtpTwcwVBLOKTPcWQ7WdrzXhlE6tBWB1owDMCE6YZnkIzN0ii72urGaV9n4Ys2q2g7WFEUAJKVQocs9ZFLMOVmnNsm_6_RdCbVtTBH121hlr_fsVmuX5X94HtSf2lR09Acs5XI7</recordid><startdate>20090315</startdate><enddate>20090315</enddate><creator>Singh, D.</creator><creator>Timofeeva, E.</creator><creator>Yu, W.</creator><creator>Routbort, J.</creator><creator>France, D.</creator><creator>Smith, D.</creator><creator>Lopez-Cepero, J. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090315</creationdate><title>An investigation of silicon carbide-water nanofluid for heat transfer applications</title><author>Singh, D. ; Timofeeva, E. ; Yu, W. ; Routbort, J. ; France, D. ; Smith, D. ; Lopez-Cepero, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-11f76594a342363b0c3917735c7fe70ee476ac533b2a3402cdb058848e597d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>AGGLOMERATION</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>HEAT TRANSFER</topic><topic>LIGHT SCATTERING</topic><topic>MECHANICAL PROPERTIES</topic><topic>OPTICAL MICROSCOPY</topic><topic>SCATTERING</topic><topic>SILICON</topic><topic>SILICON CARBIDES</topic><topic>THERMAL CONDUCTIVITY</topic><topic>VISCOSITY</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>Timofeeva, E.</creatorcontrib><creatorcontrib>Yu, W.</creatorcontrib><creatorcontrib>Routbort, J.</creatorcontrib><creatorcontrib>France, D.</creatorcontrib><creatorcontrib>Smith, D.</creatorcontrib><creatorcontrib>Lopez-Cepero, J. M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J Appl. Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, D.</au><au>Timofeeva, E.</au><au>Yu, W.</au><au>Routbort, J.</au><au>France, D.</au><au>Smith, D.</au><au>Lopez-Cepero, J. M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation of silicon carbide-water nanofluid for heat transfer applications</atitle><jtitle>J Appl. Physics</jtitle><date>2009-03-15</date><risdate>2009</risdate><volume>105</volume><issue>6</issue><spage>064306</spage><epage>064306-6</epage><pages>064306-064306-6</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Thermal conductivity and mechanical effects of silicon carbide nanoparticles uniformly dispersed in water were investigated. Mean size of SiC particles was 170 nm with a polydispersity of
∼
30
%
as determined from small-angle x-ray scattering and dynamic light scattering techniques. Room temperature viscosity of the nanofluids ranged from 2 to 3 cP for nominal nanoparticle loadings
4
-
7
vol
%
. On a normalized basis with water, viscosity of the nanofluids did not significantly change with the test temperature up to
85
°
C
. Optical microscopy of diluted nanofluid showed no agglomeration of the nanoparticles. Thermal conductivity of the fluid was measured as a function of the nominal nanoparticle loading ranging from 1 to
7
vol
%
. Enhancement in thermal conductivity was approximately 28% over that of water at
7
vol
%
particle loadings under ambient conditions. Enhancements in thermal conductivities for the nanofluids with varying nanoparticle loadings were maintained at test temperatures up to
70
°
C
. Results of thermal conductivity have been rationalized based on the existing theories of heat transfer in fluids. Implications of using this nanofluid for engineering cooling applications are discussed.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3082094</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | J Appl. Physics, 2009-03, Vol.105 (6), p.064306-064306-6 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_3082094 |
source | AIP Journals; AIP Digital Archive; Alma/SFX Local Collection |
subjects | AGGLOMERATION CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS HEAT TRANSFER LIGHT SCATTERING MECHANICAL PROPERTIES OPTICAL MICROSCOPY SCATTERING SILICON SILICON CARBIDES THERMAL CONDUCTIVITY VISCOSITY WATER |
title | An investigation of silicon carbide-water nanofluid for heat transfer applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20of%20silicon%20carbide-water%20nanofluid%20for%20heat%20transfer%20applications&rft.jtitle=J%20Appl.%20Physics&rft.au=Singh,%20D.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2009-03-15&rft.volume=105&rft.issue=6&rft.spage=064306&rft.epage=064306-6&rft.pages=064306-064306-6&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3082094&rft_dat=%3Cscitation_osti_%3Ejap%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |