Effect of iron in silicon feedstock on p - and n -type multicrystalline silicon solar cells

The effect of iron contamination in multicrystalline silicon ingots for solar cells has been investigated. Intentionally contaminated p - and n -type multicrystalline silicon ingots were grown by adding 53 ppm by weight of iron in the silicon feedstock. They are compared to reference ingots produced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2008-11, Vol.104 (10), p.104913-104913-11
Hauptverfasser: Coletti, G., Kvande, R., Mihailetchi, V. D., Geerligs, L. J., Arnberg, L., Øvrelid, E. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104913-11
container_issue 10
container_start_page 104913
container_title Journal of applied physics
container_volume 104
creator Coletti, G.
Kvande, R.
Mihailetchi, V. D.
Geerligs, L. J.
Arnberg, L.
Øvrelid, E. J.
description The effect of iron contamination in multicrystalline silicon ingots for solar cells has been investigated. Intentionally contaminated p - and n -type multicrystalline silicon ingots were grown by adding 53 ppm by weight of iron in the silicon feedstock. They are compared to reference ingots produced from nonintentionally contaminated silicon feedstock. p -type and n -type solar cell processes were applied to wafers sliced from these ingots. The as-grown minority carrier lifetime in the iron doped ingots is about 1-2 and 6 - 20   μ s for p and n types, respectively. After phosphorus diffusion and hydrogenation this lifetime is improved up to 50 times in the p -type ingot, and about five times in the n -type ingot. After boron/phosphorus codiffusion and hydrogenation the improvement is about ten times for the p -type ingot and about four times for the n -type ingot. The as-grown interstitial iron concentration in the p -type iron doped ingot is on the order of 10 13   cm − 3 , representing about 10% of the total iron concentration in the ingot, and is reduced to below 10 11   cm − 3 after phosphorus diffusion and subsequent hydrogenation. The concentration of interstitial iron after boron/phosphorus codiffusion and hydrogenation is about 10 12   cm − 3 , pointing out the reduced gettering effectiveness of boron/phosphorus codiffusion. The effect of the iron contamination on solar cells level is a decrease in the diffusion length in the top half of the ingots with a trend in agreement with Scheil's model for segregation. This is, however, not the only impact of the iron. An increased crystal defect concentration in the top and bottom of the Fe doped ingots, compared to the reference ingots, is observed, which contributes considerably to the degradation of the solar cell performance.
doi_str_mv 10.1063/1.3021355
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3021355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-f8d045cbbee473412b31b6df0c974b18dbe023cc1ccfcb9ee433c151ce06490b3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqUw8A-8Mri8V8dNvCChqnxIlVhgYrDiF1syuElkm6H_nlSt2Jjeh869w2HsFmGBsJL3uJCwRKnUGZshNFrUSsE5m8H0FY2u9SW7yvkLALGResY-N947KnzwPKSh56HnOcRA0-qd63IZ6JtPx8gFb_uO91yU_ej47ieWQGmfSxtj6N1fKg-xTZxcjPmaXfg2ZndzmnP28bR5X7-I7dvz6_pxK0gqKMI3HVSKrHWuqmWFSyvRrjoPpOvKYtNZB0tJhESerJ4oKQkVkoNVpcHKObs79lIack7OmzGFXZv2BsEcrBg0JysT-3BkM4XSljD0_8NHNWbw5qDGhN7kIH8B0UVqiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of iron in silicon feedstock on p - and n -type multicrystalline silicon solar cells</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Coletti, G. ; Kvande, R. ; Mihailetchi, V. D. ; Geerligs, L. J. ; Arnberg, L. ; Øvrelid, E. J.</creator><creatorcontrib>Coletti, G. ; Kvande, R. ; Mihailetchi, V. D. ; Geerligs, L. J. ; Arnberg, L. ; Øvrelid, E. J.</creatorcontrib><description>The effect of iron contamination in multicrystalline silicon ingots for solar cells has been investigated. Intentionally contaminated p - and n -type multicrystalline silicon ingots were grown by adding 53 ppm by weight of iron in the silicon feedstock. They are compared to reference ingots produced from nonintentionally contaminated silicon feedstock. p -type and n -type solar cell processes were applied to wafers sliced from these ingots. The as-grown minority carrier lifetime in the iron doped ingots is about 1-2 and 6 - 20   μ s for p and n types, respectively. After phosphorus diffusion and hydrogenation this lifetime is improved up to 50 times in the p -type ingot, and about five times in the n -type ingot. After boron/phosphorus codiffusion and hydrogenation the improvement is about ten times for the p -type ingot and about four times for the n -type ingot. The as-grown interstitial iron concentration in the p -type iron doped ingot is on the order of 10 13   cm − 3 , representing about 10% of the total iron concentration in the ingot, and is reduced to below 10 11   cm − 3 after phosphorus diffusion and subsequent hydrogenation. The concentration of interstitial iron after boron/phosphorus codiffusion and hydrogenation is about 10 12   cm − 3 , pointing out the reduced gettering effectiveness of boron/phosphorus codiffusion. The effect of the iron contamination on solar cells level is a decrease in the diffusion length in the top half of the ingots with a trend in agreement with Scheil's model for segregation. This is, however, not the only impact of the iron. An increased crystal defect concentration in the top and bottom of the Fe doped ingots, compared to the reference ingots, is observed, which contributes considerably to the degradation of the solar cell performance.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3021355</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2008-11, Vol.104 (10), p.104913-104913-11</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-f8d045cbbee473412b31b6df0c974b18dbe023cc1ccfcb9ee433c151ce06490b3</citedby><cites>FETCH-LOGICAL-c350t-f8d045cbbee473412b31b6df0c974b18dbe023cc1ccfcb9ee433c151ce06490b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3021355$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27901,27902,76127,76133</link.rule.ids></links><search><creatorcontrib>Coletti, G.</creatorcontrib><creatorcontrib>Kvande, R.</creatorcontrib><creatorcontrib>Mihailetchi, V. D.</creatorcontrib><creatorcontrib>Geerligs, L. J.</creatorcontrib><creatorcontrib>Arnberg, L.</creatorcontrib><creatorcontrib>Øvrelid, E. J.</creatorcontrib><title>Effect of iron in silicon feedstock on p - and n -type multicrystalline silicon solar cells</title><title>Journal of applied physics</title><description>The effect of iron contamination in multicrystalline silicon ingots for solar cells has been investigated. Intentionally contaminated p - and n -type multicrystalline silicon ingots were grown by adding 53 ppm by weight of iron in the silicon feedstock. They are compared to reference ingots produced from nonintentionally contaminated silicon feedstock. p -type and n -type solar cell processes were applied to wafers sliced from these ingots. The as-grown minority carrier lifetime in the iron doped ingots is about 1-2 and 6 - 20   μ s for p and n types, respectively. After phosphorus diffusion and hydrogenation this lifetime is improved up to 50 times in the p -type ingot, and about five times in the n -type ingot. After boron/phosphorus codiffusion and hydrogenation the improvement is about ten times for the p -type ingot and about four times for the n -type ingot. The as-grown interstitial iron concentration in the p -type iron doped ingot is on the order of 10 13   cm − 3 , representing about 10% of the total iron concentration in the ingot, and is reduced to below 10 11   cm − 3 after phosphorus diffusion and subsequent hydrogenation. The concentration of interstitial iron after boron/phosphorus codiffusion and hydrogenation is about 10 12   cm − 3 , pointing out the reduced gettering effectiveness of boron/phosphorus codiffusion. The effect of the iron contamination on solar cells level is a decrease in the diffusion length in the top half of the ingots with a trend in agreement with Scheil's model for segregation. This is, however, not the only impact of the iron. An increased crystal defect concentration in the top and bottom of the Fe doped ingots, compared to the reference ingots, is observed, which contributes considerably to the degradation of the solar cell performance.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqUw8A-8Mri8V8dNvCChqnxIlVhgYrDiF1syuElkm6H_nlSt2Jjeh869w2HsFmGBsJL3uJCwRKnUGZshNFrUSsE5m8H0FY2u9SW7yvkLALGResY-N947KnzwPKSh56HnOcRA0-qd63IZ6JtPx8gFb_uO91yU_ej47ieWQGmfSxtj6N1fKg-xTZxcjPmaXfg2ZndzmnP28bR5X7-I7dvz6_pxK0gqKMI3HVSKrHWuqmWFSyvRrjoPpOvKYtNZB0tJhESerJ4oKQkVkoNVpcHKObs79lIack7OmzGFXZv2BsEcrBg0JysT-3BkM4XSljD0_8NHNWbw5qDGhN7kIH8B0UVqiA</recordid><startdate>20081115</startdate><enddate>20081115</enddate><creator>Coletti, G.</creator><creator>Kvande, R.</creator><creator>Mihailetchi, V. D.</creator><creator>Geerligs, L. J.</creator><creator>Arnberg, L.</creator><creator>Øvrelid, E. J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081115</creationdate><title>Effect of iron in silicon feedstock on p - and n -type multicrystalline silicon solar cells</title><author>Coletti, G. ; Kvande, R. ; Mihailetchi, V. D. ; Geerligs, L. J. ; Arnberg, L. ; Øvrelid, E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-f8d045cbbee473412b31b6df0c974b18dbe023cc1ccfcb9ee433c151ce06490b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coletti, G.</creatorcontrib><creatorcontrib>Kvande, R.</creatorcontrib><creatorcontrib>Mihailetchi, V. D.</creatorcontrib><creatorcontrib>Geerligs, L. J.</creatorcontrib><creatorcontrib>Arnberg, L.</creatorcontrib><creatorcontrib>Øvrelid, E. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coletti, G.</au><au>Kvande, R.</au><au>Mihailetchi, V. D.</au><au>Geerligs, L. J.</au><au>Arnberg, L.</au><au>Øvrelid, E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of iron in silicon feedstock on p - and n -type multicrystalline silicon solar cells</atitle><jtitle>Journal of applied physics</jtitle><date>2008-11-15</date><risdate>2008</risdate><volume>104</volume><issue>10</issue><spage>104913</spage><epage>104913-11</epage><pages>104913-104913-11</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The effect of iron contamination in multicrystalline silicon ingots for solar cells has been investigated. Intentionally contaminated p - and n -type multicrystalline silicon ingots were grown by adding 53 ppm by weight of iron in the silicon feedstock. They are compared to reference ingots produced from nonintentionally contaminated silicon feedstock. p -type and n -type solar cell processes were applied to wafers sliced from these ingots. The as-grown minority carrier lifetime in the iron doped ingots is about 1-2 and 6 - 20   μ s for p and n types, respectively. After phosphorus diffusion and hydrogenation this lifetime is improved up to 50 times in the p -type ingot, and about five times in the n -type ingot. After boron/phosphorus codiffusion and hydrogenation the improvement is about ten times for the p -type ingot and about four times for the n -type ingot. The as-grown interstitial iron concentration in the p -type iron doped ingot is on the order of 10 13   cm − 3 , representing about 10% of the total iron concentration in the ingot, and is reduced to below 10 11   cm − 3 after phosphorus diffusion and subsequent hydrogenation. The concentration of interstitial iron after boron/phosphorus codiffusion and hydrogenation is about 10 12   cm − 3 , pointing out the reduced gettering effectiveness of boron/phosphorus codiffusion. The effect of the iron contamination on solar cells level is a decrease in the diffusion length in the top half of the ingots with a trend in agreement with Scheil's model for segregation. This is, however, not the only impact of the iron. An increased crystal defect concentration in the top and bottom of the Fe doped ingots, compared to the reference ingots, is observed, which contributes considerably to the degradation of the solar cell performance.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3021355</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2008-11, Vol.104 (10), p.104913-104913-11
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_3021355
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Effect of iron in silicon feedstock on p - and n -type multicrystalline silicon solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A50%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20iron%20in%20silicon%20feedstock%20on%20p%20-%20and%20n%20-type%20multicrystalline%20silicon%20solar%20cells&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Coletti,%20G.&rft.date=2008-11-15&rft.volume=104&rft.issue=10&rft.spage=104913&rft.epage=104913-11&rft.pages=104913-104913-11&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3021355&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true