Two dimensional mesoscale simulations of projectile instability during penetration in dry sand
To gain insight into the instability and trajectory change in projectiles penetrating dry sand at high velocities, two dimensional plane strain mesoscale simulations were carried out using representative models of a particulate system and of a small projectile. A program, ISP-SAND , was developed an...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2008-10, Vol.104 (8), p.083502-083502-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 083502-10 |
---|---|
container_issue | 8 |
container_start_page | 083502 |
container_title | Journal of applied physics |
container_volume | 104 |
creator | Dwivedi, S. K. Teeter, R. D. Felice, C. W. Gupta, Y. M. |
description | To gain insight into the instability and trajectory change in projectiles penetrating dry sand at high velocities, two dimensional plane strain mesoscale simulations were carried out using representative models of a particulate system and of a small projectile. A program,
ISP-SAND
, was developed and used to generate the representative particulate system with mean grain sizes of 60 and
120
μ
m
as well as
±
30
%
uniform size distribution from the mean. Target porosities ranged from 30% to 40%. The penetration of ogive nose steel projectiles with caliber radius head of 3.5 and length-to-diameter
(
l
/
d
)
ratio of 3.85 was simulated using the updated Lagrangian explicit parallel finite element code
ISP-TROTP
. Deformation of the projectile and individual sand grains was analyzed using a nonlinear elastic-inelastic model for these materials. Grain-grain and grain-projectile interactions were analyzed using a contact algorithm with and without friction. Projectile instability was quantified and compared using the lateral displacement of the center of mass, lateral force acting on the projectile, and its rotational momentum about the center of mass. The main source of projectile instability and the ensuing trajectory change in the penetration simulations was found to be the inhomogeneous loading of the projectile due to the heterogeneities and randomness inherent in a particulate media like sand. The granularity of the media has not been considered explicitly in previous work. Projectile instability increased with impact velocity, as expected. However, it also increased for the case of elastic impactor that preserved the nose shape, with an increase in grain size, and for uniform grain sizes. Moreover, friction, inherently present in geologic materials, was found to be a major contributor to instability. Conclusions derived from one projectile depth simulations were confirmed by two deeper penetration simulations considering up to three full lengths of penetration (requiring a larger sand target). The deep penetration simulation predicted considerable instability with a trajectory change of approximately
45
°
when friction was considered in the dry sand medium. An overall conclusion of this work is that projectile penetration studies in geologic materials need to explicitly consider the heterogeneous or particulate nature of these materials. |
doi_str_mv | 10.1063/1.2999391 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2999391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-bcc1d6c27c3a66526c853dd233bfc404878429a248bfcb9876b4192da5be8e13</originalsourceid><addsrcrecordid>eNp1kMtKBDEQRYMo2I4u_INsXfSYSvqRbAQZfMGAm1kb0klaMvSLVAaZv7fnsXDjqrh1D0VxCLkHtgRWiUdYcqWUUHBBMmBS5XVZskuSMcYhl6pW1-QGccsYgBQqI1-bn5G60PsBwziYjvYeR7Sm8xRDv-tMmtdIx5ZOcdx6m8LchAGTaUIX0p66XQzDN5384FM80nNNXdxTNIO7JVet6dDfneeCbF5fNqv3fP359rF6XueWyyLljbXgKstrK0xVlbyyshTOcSGa1haskLUsuDK8kHNulKyrpgDFnSkbLz2IBXk4nbVxRIy-1VMMvYl7DUwfvGjQZy8z-3Ri0YZ0fPh_eJaj_8jRBzniF8p3bR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two dimensional mesoscale simulations of projectile instability during penetration in dry sand</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Dwivedi, S. K. ; Teeter, R. D. ; Felice, C. W. ; Gupta, Y. M.</creator><creatorcontrib>Dwivedi, S. K. ; Teeter, R. D. ; Felice, C. W. ; Gupta, Y. M.</creatorcontrib><description>To gain insight into the instability and trajectory change in projectiles penetrating dry sand at high velocities, two dimensional plane strain mesoscale simulations were carried out using representative models of a particulate system and of a small projectile. A program,
ISP-SAND
, was developed and used to generate the representative particulate system with mean grain sizes of 60 and
120
μ
m
as well as
±
30
%
uniform size distribution from the mean. Target porosities ranged from 30% to 40%. The penetration of ogive nose steel projectiles with caliber radius head of 3.5 and length-to-diameter
(
l
/
d
)
ratio of 3.85 was simulated using the updated Lagrangian explicit parallel finite element code
ISP-TROTP
. Deformation of the projectile and individual sand grains was analyzed using a nonlinear elastic-inelastic model for these materials. Grain-grain and grain-projectile interactions were analyzed using a contact algorithm with and without friction. Projectile instability was quantified and compared using the lateral displacement of the center of mass, lateral force acting on the projectile, and its rotational momentum about the center of mass. The main source of projectile instability and the ensuing trajectory change in the penetration simulations was found to be the inhomogeneous loading of the projectile due to the heterogeneities and randomness inherent in a particulate media like sand. The granularity of the media has not been considered explicitly in previous work. Projectile instability increased with impact velocity, as expected. However, it also increased for the case of elastic impactor that preserved the nose shape, with an increase in grain size, and for uniform grain sizes. Moreover, friction, inherently present in geologic materials, was found to be a major contributor to instability. Conclusions derived from one projectile depth simulations were confirmed by two deeper penetration simulations considering up to three full lengths of penetration (requiring a larger sand target). The deep penetration simulation predicted considerable instability with a trajectory change of approximately
45
°
when friction was considered in the dry sand medium. An overall conclusion of this work is that projectile penetration studies in geologic materials need to explicitly consider the heterogeneous or particulate nature of these materials.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.2999391</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Journal of applied physics, 2008-10, Vol.104 (8), p.083502-083502-10</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-bcc1d6c27c3a66526c853dd233bfc404878429a248bfcb9876b4192da5be8e13</citedby><cites>FETCH-LOGICAL-c284t-bcc1d6c27c3a66526c853dd233bfc404878429a248bfcb9876b4192da5be8e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.2999391$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,1553,4498,27903,27904,76130,76136</link.rule.ids></links><search><creatorcontrib>Dwivedi, S. K.</creatorcontrib><creatorcontrib>Teeter, R. D.</creatorcontrib><creatorcontrib>Felice, C. W.</creatorcontrib><creatorcontrib>Gupta, Y. M.</creatorcontrib><title>Two dimensional mesoscale simulations of projectile instability during penetration in dry sand</title><title>Journal of applied physics</title><description>To gain insight into the instability and trajectory change in projectiles penetrating dry sand at high velocities, two dimensional plane strain mesoscale simulations were carried out using representative models of a particulate system and of a small projectile. A program,
ISP-SAND
, was developed and used to generate the representative particulate system with mean grain sizes of 60 and
120
μ
m
as well as
±
30
%
uniform size distribution from the mean. Target porosities ranged from 30% to 40%. The penetration of ogive nose steel projectiles with caliber radius head of 3.5 and length-to-diameter
(
l
/
d
)
ratio of 3.85 was simulated using the updated Lagrangian explicit parallel finite element code
ISP-TROTP
. Deformation of the projectile and individual sand grains was analyzed using a nonlinear elastic-inelastic model for these materials. Grain-grain and grain-projectile interactions were analyzed using a contact algorithm with and without friction. Projectile instability was quantified and compared using the lateral displacement of the center of mass, lateral force acting on the projectile, and its rotational momentum about the center of mass. The main source of projectile instability and the ensuing trajectory change in the penetration simulations was found to be the inhomogeneous loading of the projectile due to the heterogeneities and randomness inherent in a particulate media like sand. The granularity of the media has not been considered explicitly in previous work. Projectile instability increased with impact velocity, as expected. However, it also increased for the case of elastic impactor that preserved the nose shape, with an increase in grain size, and for uniform grain sizes. Moreover, friction, inherently present in geologic materials, was found to be a major contributor to instability. Conclusions derived from one projectile depth simulations were confirmed by two deeper penetration simulations considering up to three full lengths of penetration (requiring a larger sand target). The deep penetration simulation predicted considerable instability with a trajectory change of approximately
45
°
when friction was considered in the dry sand medium. An overall conclusion of this work is that projectile penetration studies in geologic materials need to explicitly consider the heterogeneous or particulate nature of these materials.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKBDEQRYMo2I4u_INsXfSYSvqRbAQZfMGAm1kb0klaMvSLVAaZv7fnsXDjqrh1D0VxCLkHtgRWiUdYcqWUUHBBMmBS5XVZskuSMcYhl6pW1-QGccsYgBQqI1-bn5G60PsBwziYjvYeR7Sm8xRDv-tMmtdIx5ZOcdx6m8LchAGTaUIX0p66XQzDN5384FM80nNNXdxTNIO7JVet6dDfneeCbF5fNqv3fP359rF6XueWyyLljbXgKstrK0xVlbyyshTOcSGa1haskLUsuDK8kHNulKyrpgDFnSkbLz2IBXk4nbVxRIy-1VMMvYl7DUwfvGjQZy8z-3Ri0YZ0fPh_eJaj_8jRBzniF8p3bR0</recordid><startdate>20081015</startdate><enddate>20081015</enddate><creator>Dwivedi, S. K.</creator><creator>Teeter, R. D.</creator><creator>Felice, C. W.</creator><creator>Gupta, Y. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081015</creationdate><title>Two dimensional mesoscale simulations of projectile instability during penetration in dry sand</title><author>Dwivedi, S. K. ; Teeter, R. D. ; Felice, C. W. ; Gupta, Y. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-bcc1d6c27c3a66526c853dd233bfc404878429a248bfcb9876b4192da5be8e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dwivedi, S. K.</creatorcontrib><creatorcontrib>Teeter, R. D.</creatorcontrib><creatorcontrib>Felice, C. W.</creatorcontrib><creatorcontrib>Gupta, Y. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dwivedi, S. K.</au><au>Teeter, R. D.</au><au>Felice, C. W.</au><au>Gupta, Y. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two dimensional mesoscale simulations of projectile instability during penetration in dry sand</atitle><jtitle>Journal of applied physics</jtitle><date>2008-10-15</date><risdate>2008</risdate><volume>104</volume><issue>8</issue><spage>083502</spage><epage>083502-10</epage><pages>083502-083502-10</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>To gain insight into the instability and trajectory change in projectiles penetrating dry sand at high velocities, two dimensional plane strain mesoscale simulations were carried out using representative models of a particulate system and of a small projectile. A program,
ISP-SAND
, was developed and used to generate the representative particulate system with mean grain sizes of 60 and
120
μ
m
as well as
±
30
%
uniform size distribution from the mean. Target porosities ranged from 30% to 40%. The penetration of ogive nose steel projectiles with caliber radius head of 3.5 and length-to-diameter
(
l
/
d
)
ratio of 3.85 was simulated using the updated Lagrangian explicit parallel finite element code
ISP-TROTP
. Deformation of the projectile and individual sand grains was analyzed using a nonlinear elastic-inelastic model for these materials. Grain-grain and grain-projectile interactions were analyzed using a contact algorithm with and without friction. Projectile instability was quantified and compared using the lateral displacement of the center of mass, lateral force acting on the projectile, and its rotational momentum about the center of mass. The main source of projectile instability and the ensuing trajectory change in the penetration simulations was found to be the inhomogeneous loading of the projectile due to the heterogeneities and randomness inherent in a particulate media like sand. The granularity of the media has not been considered explicitly in previous work. Projectile instability increased with impact velocity, as expected. However, it also increased for the case of elastic impactor that preserved the nose shape, with an increase in grain size, and for uniform grain sizes. Moreover, friction, inherently present in geologic materials, was found to be a major contributor to instability. Conclusions derived from one projectile depth simulations were confirmed by two deeper penetration simulations considering up to three full lengths of penetration (requiring a larger sand target). The deep penetration simulation predicted considerable instability with a trajectory change of approximately
45
°
when friction was considered in the dry sand medium. An overall conclusion of this work is that projectile penetration studies in geologic materials need to explicitly consider the heterogeneous or particulate nature of these materials.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2999391</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2008-10, Vol.104 (8), p.083502-083502-10 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_2999391 |
source | American Institute of Physics (AIP) Journals; AIP Digital Archive; Alma/SFX Local Collection |
title | Two dimensional mesoscale simulations of projectile instability during penetration in dry sand |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20dimensional%20mesoscale%20simulations%20of%20projectile%20instability%20during%20penetration%20in%20dry%20sand&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Dwivedi,%20S.%20K.&rft.date=2008-10-15&rft.volume=104&rft.issue=8&rft.spage=083502&rft.epage=083502-10&rft.pages=083502-083502-10&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.2999391&rft_dat=%3Cscitation_cross%3Ejap%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |