Nanopencil as a wear-tolerant probe for ultrahigh density data storage
A dielectric-sheathed carbon nanotube probe, resembling a "nanopencil," has been fabricated by conformal deposition of silicon-oxide on a carbon nanotube and subsequent "sharpening" to expose its tip. The high aspect-ratio nanopencil probe takes advantage of the small nanotube el...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2008-09, Vol.93 (10), p.103112-103112-3 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103112-3 |
---|---|
container_issue | 10 |
container_start_page | 103112 |
container_title | Applied physics letters |
container_volume | 93 |
creator | Tayebi, Noureddine Narui, Yoshie Chen, Robert J. Collier, C. Patrick Giapis, Konstantinos P. Zhang, Yuegang |
description | A dielectric-sheathed carbon nanotube probe, resembling a "nanopencil," has been fabricated by conformal deposition of silicon-oxide on a carbon nanotube and subsequent "sharpening" to expose its tip. The high aspect-ratio nanopencil probe takes advantage of the small nanotube electrode size, while avoiding bending and buckling issues encountered with naked or polymer-coated carbon nanotube probes. Since the effective electrode diameter of the probe would not change even after significant wear, it is capable of long-lasting read/write operations in contact mode with a bit size of several nanometers. |
doi_str_mv | 10.1063/1.2981641 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2981641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d67c0dd487b16d9c379888f320d11a36718fc02df3e03790d270a1f73f0f629f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoOFYX_oNsXUx9b9ImmY0gxVah6EbX4TUf7cg4KUlE-u9tacGVq8vlHu7iMHaLMEaQ4h7HTatRTvCMVQhK1QJRn7MKAEQt2ylesqucP_d12ghRsfkrDXHrB9v1nDIn_uMp1SX2PtFQ-DbFlechJv7dl0Sbbr3hzg-5KzvuqBDPJSZa-2t2EajP_uaUI_Yxf3qfPdfLt8XL7HFZW4FtqZ1UFpybaLVC6VorVKu1DqIBh0hCKtTBQuOC8LDfwDUKCIMSAYJs2iBG7O74a1PMOflgtqn7orQzCOYgwKA5CdizD0c2265Q6eLwP_xnwVA2ZA4WxC8dwWJB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanopencil as a wear-tolerant probe for ultrahigh density data storage</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Tayebi, Noureddine ; Narui, Yoshie ; Chen, Robert J. ; Collier, C. Patrick ; Giapis, Konstantinos P. ; Zhang, Yuegang</creator><creatorcontrib>Tayebi, Noureddine ; Narui, Yoshie ; Chen, Robert J. ; Collier, C. Patrick ; Giapis, Konstantinos P. ; Zhang, Yuegang</creatorcontrib><description>A dielectric-sheathed carbon nanotube probe, resembling a "nanopencil," has been fabricated by conformal deposition of silicon-oxide on a carbon nanotube and subsequent "sharpening" to expose its tip. The high aspect-ratio nanopencil probe takes advantage of the small nanotube electrode size, while avoiding bending and buckling issues encountered with naked or polymer-coated carbon nanotube probes. Since the effective electrode diameter of the probe would not change even after significant wear, it is capable of long-lasting read/write operations in contact mode with a bit size of several nanometers.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2981641</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2008-09, Vol.93 (10), p.103112-103112-3</ispartof><rights>2008 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d67c0dd487b16d9c379888f320d11a36718fc02df3e03790d270a1f73f0f629f3</citedby><cites>FETCH-LOGICAL-c319t-d67c0dd487b16d9c379888f320d11a36718fc02df3e03790d270a1f73f0f629f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.2981641$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,1554,4498,27905,27906,76133,76139</link.rule.ids></links><search><creatorcontrib>Tayebi, Noureddine</creatorcontrib><creatorcontrib>Narui, Yoshie</creatorcontrib><creatorcontrib>Chen, Robert J.</creatorcontrib><creatorcontrib>Collier, C. Patrick</creatorcontrib><creatorcontrib>Giapis, Konstantinos P.</creatorcontrib><creatorcontrib>Zhang, Yuegang</creatorcontrib><title>Nanopencil as a wear-tolerant probe for ultrahigh density data storage</title><title>Applied physics letters</title><description>A dielectric-sheathed carbon nanotube probe, resembling a "nanopencil," has been fabricated by conformal deposition of silicon-oxide on a carbon nanotube and subsequent "sharpening" to expose its tip. The high aspect-ratio nanopencil probe takes advantage of the small nanotube electrode size, while avoiding bending and buckling issues encountered with naked or polymer-coated carbon nanotube probes. Since the effective electrode diameter of the probe would not change even after significant wear, it is capable of long-lasting read/write operations in contact mode with a bit size of several nanometers.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoOFYX_oNsXUx9b9ImmY0gxVah6EbX4TUf7cg4KUlE-u9tacGVq8vlHu7iMHaLMEaQ4h7HTatRTvCMVQhK1QJRn7MKAEQt2ylesqucP_d12ghRsfkrDXHrB9v1nDIn_uMp1SX2PtFQ-DbFlechJv7dl0Sbbr3hzg-5KzvuqBDPJSZa-2t2EajP_uaUI_Yxf3qfPdfLt8XL7HFZW4FtqZ1UFpybaLVC6VorVKu1DqIBh0hCKtTBQuOC8LDfwDUKCIMSAYJs2iBG7O74a1PMOflgtqn7orQzCOYgwKA5CdizD0c2265Q6eLwP_xnwVA2ZA4WxC8dwWJB</recordid><startdate>20080908</startdate><enddate>20080908</enddate><creator>Tayebi, Noureddine</creator><creator>Narui, Yoshie</creator><creator>Chen, Robert J.</creator><creator>Collier, C. Patrick</creator><creator>Giapis, Konstantinos P.</creator><creator>Zhang, Yuegang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080908</creationdate><title>Nanopencil as a wear-tolerant probe for ultrahigh density data storage</title><author>Tayebi, Noureddine ; Narui, Yoshie ; Chen, Robert J. ; Collier, C. Patrick ; Giapis, Konstantinos P. ; Zhang, Yuegang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d67c0dd487b16d9c379888f320d11a36718fc02df3e03790d270a1f73f0f629f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tayebi, Noureddine</creatorcontrib><creatorcontrib>Narui, Yoshie</creatorcontrib><creatorcontrib>Chen, Robert J.</creatorcontrib><creatorcontrib>Collier, C. Patrick</creatorcontrib><creatorcontrib>Giapis, Konstantinos P.</creatorcontrib><creatorcontrib>Zhang, Yuegang</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tayebi, Noureddine</au><au>Narui, Yoshie</au><au>Chen, Robert J.</au><au>Collier, C. Patrick</au><au>Giapis, Konstantinos P.</au><au>Zhang, Yuegang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanopencil as a wear-tolerant probe for ultrahigh density data storage</atitle><jtitle>Applied physics letters</jtitle><date>2008-09-08</date><risdate>2008</risdate><volume>93</volume><issue>10</issue><spage>103112</spage><epage>103112-3</epage><pages>103112-103112-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>A dielectric-sheathed carbon nanotube probe, resembling a "nanopencil," has been fabricated by conformal deposition of silicon-oxide on a carbon nanotube and subsequent "sharpening" to expose its tip. The high aspect-ratio nanopencil probe takes advantage of the small nanotube electrode size, while avoiding bending and buckling issues encountered with naked or polymer-coated carbon nanotube probes. Since the effective electrode diameter of the probe would not change even after significant wear, it is capable of long-lasting read/write operations in contact mode with a bit size of several nanometers.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.2981641</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2008-09, Vol.93 (10), p.103112-103112-3 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_2981641 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
title | Nanopencil as a wear-tolerant probe for ultrahigh density data storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanopencil%20as%20a%20wear-tolerant%20probe%20for%20ultrahigh%20density%20data%20storage&rft.jtitle=Applied%20physics%20letters&rft.au=Tayebi,%20Noureddine&rft.date=2008-09-08&rft.volume=93&rft.issue=10&rft.spage=103112&rft.epage=103112-3&rft.pages=103112-103112-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.2981641&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |