Relaxation of strained silicon on Si0.5Ge0.5 virtual substrates

Strain relaxation has been studied in tensile strained silicon layers grown on Si0.5Ge0.5 virtual substrates, for layers many times the critical thickness, using high resolution x-ray diffraction. Layers up to 30 nm thick were found to relax less than 2% by the glide of preexisting 60° dislocations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2008-08, Vol.93 (7)
Hauptverfasser: Parsons, J., Morris, R. J. H., Leadley, D. R., Parker, E. H. C., Fulgoni, D. J. F., Nash, L. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Applied physics letters
container_volume 93
creator Parsons, J.
Morris, R. J. H.
Leadley, D. R.
Parker, E. H. C.
Fulgoni, D. J. F.
Nash, L. J.
description Strain relaxation has been studied in tensile strained silicon layers grown on Si0.5Ge0.5 virtual substrates, for layers many times the critical thickness, using high resolution x-ray diffraction. Layers up to 30 nm thick were found to relax less than 2% by the glide of preexisting 60° dislocations. Relaxation is limited because many of these dislocations dissociate into extended stacking faults that impede the dislocation glide. For thicker layers, nucleated microtwins were observed, which significantly increased relaxation to 14%. All these tensile strained layers are found to be much more stable than layers with comparable compressive strain.
doi_str_mv 10.1063/1.2975188
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_2975188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_2975188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-7a70e704b9c5e8894c13e029a7b5090d8be2cf7228f981f029f702a5f6504eee3</originalsourceid><addsrcrecordid>eNotT01LxDAUDKJgXT34D3L10Ppe0jTJSWTRVVgQ_DiXNPsCkdpK0hX997bsXmaYDwaGsWuECqGRt1gJqxUac8IKBK1LiWhOWQEAsmyswnN2kfPnLJWQsmB3r9S7XzfFceBj4HlKLg604zn20S_ewN8iVGpDM_CfmKa963ned0tzonzJzoLrM10decU-Hh_e10_l9mXzvL7flh5tPZXaaSANdWe9ImNs7VESCOt0p8DCznQkfNBCmGANhjkJGoRToVFQE5FcsZvDrk9jzolC-53il0t_LUK7PG-xPT6X__lMSXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Relaxation of strained silicon on Si0.5Ge0.5 virtual substrates</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Parsons, J. ; Morris, R. J. H. ; Leadley, D. R. ; Parker, E. H. C. ; Fulgoni, D. J. F. ; Nash, L. J.</creator><creatorcontrib>Parsons, J. ; Morris, R. J. H. ; Leadley, D. R. ; Parker, E. H. C. ; Fulgoni, D. J. F. ; Nash, L. J.</creatorcontrib><description>Strain relaxation has been studied in tensile strained silicon layers grown on Si0.5Ge0.5 virtual substrates, for layers many times the critical thickness, using high resolution x-ray diffraction. Layers up to 30 nm thick were found to relax less than 2% by the glide of preexisting 60° dislocations. Relaxation is limited because many of these dislocations dissociate into extended stacking faults that impede the dislocation glide. For thicker layers, nucleated microtwins were observed, which significantly increased relaxation to 14%. All these tensile strained layers are found to be much more stable than layers with comparable compressive strain.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.2975188</identifier><language>eng</language><ispartof>Applied physics letters, 2008-08, Vol.93 (7)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c194t-7a70e704b9c5e8894c13e029a7b5090d8be2cf7228f981f029f702a5f6504eee3</citedby><cites>FETCH-LOGICAL-c194t-7a70e704b9c5e8894c13e029a7b5090d8be2cf7228f981f029f702a5f6504eee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Parsons, J.</creatorcontrib><creatorcontrib>Morris, R. J. H.</creatorcontrib><creatorcontrib>Leadley, D. R.</creatorcontrib><creatorcontrib>Parker, E. H. C.</creatorcontrib><creatorcontrib>Fulgoni, D. J. F.</creatorcontrib><creatorcontrib>Nash, L. J.</creatorcontrib><title>Relaxation of strained silicon on Si0.5Ge0.5 virtual substrates</title><title>Applied physics letters</title><description>Strain relaxation has been studied in tensile strained silicon layers grown on Si0.5Ge0.5 virtual substrates, for layers many times the critical thickness, using high resolution x-ray diffraction. Layers up to 30 nm thick were found to relax less than 2% by the glide of preexisting 60° dislocations. Relaxation is limited because many of these dislocations dissociate into extended stacking faults that impede the dislocation glide. For thicker layers, nucleated microtwins were observed, which significantly increased relaxation to 14%. All these tensile strained layers are found to be much more stable than layers with comparable compressive strain.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNotT01LxDAUDKJgXT34D3L10Ppe0jTJSWTRVVgQ_DiXNPsCkdpK0hX997bsXmaYDwaGsWuECqGRt1gJqxUac8IKBK1LiWhOWQEAsmyswnN2kfPnLJWQsmB3r9S7XzfFceBj4HlKLg604zn20S_ewN8iVGpDM_CfmKa963ned0tzonzJzoLrM10decU-Hh_e10_l9mXzvL7flh5tPZXaaSANdWe9ImNs7VESCOt0p8DCznQkfNBCmGANhjkJGoRToVFQE5FcsZvDrk9jzolC-53il0t_LUK7PG-xPT6X__lMSXI</recordid><startdate>20080818</startdate><enddate>20080818</enddate><creator>Parsons, J.</creator><creator>Morris, R. J. H.</creator><creator>Leadley, D. R.</creator><creator>Parker, E. H. C.</creator><creator>Fulgoni, D. J. F.</creator><creator>Nash, L. J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080818</creationdate><title>Relaxation of strained silicon on Si0.5Ge0.5 virtual substrates</title><author>Parsons, J. ; Morris, R. J. H. ; Leadley, D. R. ; Parker, E. H. C. ; Fulgoni, D. J. F. ; Nash, L. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-7a70e704b9c5e8894c13e029a7b5090d8be2cf7228f981f029f702a5f6504eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsons, J.</creatorcontrib><creatorcontrib>Morris, R. J. H.</creatorcontrib><creatorcontrib>Leadley, D. R.</creatorcontrib><creatorcontrib>Parker, E. H. C.</creatorcontrib><creatorcontrib>Fulgoni, D. J. F.</creatorcontrib><creatorcontrib>Nash, L. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsons, J.</au><au>Morris, R. J. H.</au><au>Leadley, D. R.</au><au>Parker, E. H. C.</au><au>Fulgoni, D. J. F.</au><au>Nash, L. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxation of strained silicon on Si0.5Ge0.5 virtual substrates</atitle><jtitle>Applied physics letters</jtitle><date>2008-08-18</date><risdate>2008</risdate><volume>93</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Strain relaxation has been studied in tensile strained silicon layers grown on Si0.5Ge0.5 virtual substrates, for layers many times the critical thickness, using high resolution x-ray diffraction. Layers up to 30 nm thick were found to relax less than 2% by the glide of preexisting 60° dislocations. Relaxation is limited because many of these dislocations dissociate into extended stacking faults that impede the dislocation glide. For thicker layers, nucleated microtwins were observed, which significantly increased relaxation to 14%. All these tensile strained layers are found to be much more stable than layers with comparable compressive strain.</abstract><doi>10.1063/1.2975188</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2008-08, Vol.93 (7)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_2975188
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Relaxation of strained silicon on Si0.5Ge0.5 virtual substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxation%20of%20strained%20silicon%20on%20Si0.5Ge0.5%20virtual%20substrates&rft.jtitle=Applied%20physics%20letters&rft.au=Parsons,%20J.&rft.date=2008-08-18&rft.volume=93&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.2975188&rft_dat=%3Ccrossref%3E10_1063_1_2975188%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true